Swapna Ganduri, Yu Eun Y, Lue Neal F
Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medical College, New York, New York, United States of America.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, United States of America.
Microb Cell. 2018 Aug 7;5(9):393-403. doi: 10.15698/mic2018.09.645.
Telomeres play important roles in genome stability and cell proliferation. Telomere lengths are heterogeneous and because just a few abnormal telomeres are sufficient to trigger significant cellular response, it is informative to have accurate assays that reveal not only average telomere lengths, but also the distribution of the longest and shortest telomeres in a given sample. Herein we report for the first time, the development of single telomere length analysis (STELA) - a PCR-based assay that amplifies multiple, individual telomeres - for , a basidiomycete fungus. Compared to the standard telomere Southern technique, STELA revealed a broader distribution of telomere size as well as the existence of relatively short telomeres in wild type cells. When applied to ∆ a mutant thought to be defective in telomere replication, STELA revealed preferential loss of long telomeres, whose maintenance may thus be especially dependent upon efficient replication. In comparison to ∆ the ∆ (telomerase null) mutant exhibited greater erosion of short telomeres, consistent with a special role for telomerase in re-lengthening extra-short telomeres. We also used STELA to characterize the 5' ends of telomere C-strand, and found that in , they terminate preferentially at selected nucleotide positions within the telomere repeat. Deleting altered the 5'-end distributions, suggesting that telomerase may directly or indirectly modulate C-strand 5' end formation. These findings illustrate the utility of STELA as well as the strengths of as a model system for telomere research.
端粒在基因组稳定性和细胞增殖中发挥着重要作用。端粒长度是异质的,由于仅少数异常端粒就足以引发显著的细胞反应,因此拥有准确的检测方法不仅能揭示平均端粒长度,还能显示给定样本中最长和最短端粒的分布情况,这是很有意义的。在此,我们首次报道了针对一种担子菌真菌开发的单端粒长度分析(STELA)——一种基于PCR的检测方法,可扩增多个单个端粒。与标准的端粒Southern技术相比,STELA揭示了端粒大小更广泛的分布以及野生型细胞中相对较短端粒的存在。当应用于被认为在端粒复制方面存在缺陷的Δ突变体时,STELA显示长端粒优先丢失,因此其维持可能特别依赖于高效复制。与Δ相比,Δ(端粒酶缺失)突变体表现出短端粒的更大侵蚀,这与端粒酶在重新延长超短端粒中的特殊作用一致。我们还使用STELA来表征端粒C链的5'端,发现在所研究的真菌中,它们优先在端粒重复序列内的选定核苷酸位置终止。删除相关基因改变了5'端分布,表明端粒酶可能直接或间接调节C链5'端的形成。这些发现说明了STELA的实用性以及该真菌作为端粒研究模型系统的优势。