Suppr超能文献

基于主导局部纹理-颜色模式(DLTCP)的特征提取与彩色图像分类。

Feature Extraction Using Dominant Local Texture-Color Patterns (DLTCP) and Classification of Color Images.

机构信息

Department of Computer Science & Engineering, Manonmaniam Sundaranar University, Tirunelveli, India.

出版信息

J Med Syst. 2018 Oct 3;42(11):220. doi: 10.1007/s10916-018-1067-6.

Abstract

Feature extraction and classification are considered to be the major tasks in image processing applications. This paper proposes a novel method to extract the features of a color image for classification. The proposed method, Dominant Local Texture-Color Patterns (DLTCP) is based on the Dominant Texture and Dominant Color channels in a RGB color space. The dominant texture pattern represents a channel among RGB with maximum variations in the texture and the dominant color pattern represents the color channel with the maximum pixel intensity. The combination of channels with dominant texture pattern and dominant color pattern is assigned a unique value which is used to extract the features of an image. The proposed texture-color features is tested for rotational, illumination and scale invariance property using the color images taken from Outex and Vistex databases. It is experimentally shown that the proposed method achieves the highest accuracy in classification using K-Nearest Neighbor (KNN) classifier under various challenges.

摘要

特征提取和分类被认为是图像处理应用中的主要任务。本文提出了一种新的方法来提取彩色图像的特征进行分类。所提出的方法,即主导局部纹理-颜色模式(DLTCP),基于 RGB 颜色空间中的主导纹理和主导颜色通道。主导纹理模式表示 RGB 通道中纹理变化最大的通道,而主导颜色模式表示像素强度最大的颜色通道。具有主导纹理模式和主导颜色模式的通道的组合被分配一个唯一的值,用于提取图像的特征。使用来自 Outex 和 Vistex 数据库的彩色图像对所提出的纹理-颜色特征进行旋转、光照和尺度不变性的测试。实验表明,在所提出的方法中,使用 K-最近邻(KNN)分类器在各种挑战下实现了最高的分类精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验