Impel NeuroPharma, Seattle, Washington, USA.
Natoli Institute for Industrial Pharmacy Research and Development at Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, 11201, USA.
AAPS PharmSciTech. 2018 Nov;19(8):3778-3790. doi: 10.1208/s12249-018-1189-7. Epub 2018 Oct 2.
The hot melt extrusion (HME) technology was explored and optimized to solidify an amorphous nanosuspension using Quality by Design (QbD) methodology. A design of experiments (DoE) approach was used to perform a set of 15 experiments, varying independent variables (feed rate, input temperature, and screw speed) within a design space. Redispersibility index (RDI), moisture content, and process yield constituted the critical quality attributes (CQAs) of the experimental design. Regression analysis and ANOVA were employed to identify and estimate significant main effects and two-way interactions, and model the process of HME drying for predictive purposes. The optimized HME-dried end product was characterized for physicochemical properties using differential scanning calorimetry (DSC), X-ray powder diffractions (XRPD), polarized light microscopy (PLM), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. The statistical analysis reveals feed rate and input temperature as significant independent variables, critically influencing RDI and moisture content of solidified end product. The model developed for process yield was insignificant at a p-value of 0.05. The API retained its amorphous nature after the extrusion process which was confirmed using DSC and XRPD techniques. PLM was unsuitable to differentiate and determine crystallinity of drug moiety in the presence of a semi-crystalline bulking agent, microcrystalline cellulose (MCC). In vitro dissolution study depicted solubility and dissolution enhancement for HME-dried amorphous nanosuspension in both the dissolution media which can be attributed to amorphous nature of nanosized drug particles. A well-designed study implemented by DoE aided in developing a robust and novel HME technique to dry aqueous nanosuspension.
热熔挤出 (HME) 技术被探索和优化,以使用质量源于设计 (QbD) 方法使非晶纳米混悬液固化。采用实验设计 (DoE) 方法进行了一组 15 项实验,在设计空间内改变独立变量(进料速率、输入温度和螺杆速度)。再分散指数 (RDI)、水分含量和工艺收率构成实验设计的关键质量属性 (CQA)。回归分析和方差分析用于识别和估计显著的主效应和双向相互作用,并对 HME 干燥过程进行建模,以进行预测。使用差示扫描量热法 (DSC)、X 射线粉末衍射 (XRPD)、偏光显微镜 (PLM)、傅里叶变换红外光谱 (FTIR) 和体外溶解研究对优化的 HME 干燥终产物的物理化学性质进行了表征。统计分析表明,进料速率和输入温度是显著的独立变量,对固化终产物的 RDI 和水分含量有重要影响。在 p 值为 0.05 时,开发的用于过程收率的模型并不重要。API 在挤出过程后保持其非晶态,这一点通过 DSC 和 XRPD 技术得到了证实。PLM 不适合在存在半结晶赋形剂微晶纤维素 (MCC) 的情况下区分和确定药物部分的结晶度。体外溶解研究表明,HME 干燥的非晶纳米混悬液在两种溶解介质中的溶解度和溶解增强,这可以归因于纳米药物颗粒的非晶态。通过 DoE 实施的精心设计的研究有助于开发一种稳健且新颖的 HME 技术,以干燥水性纳米混悬液。