Suppr超能文献

利用飞机监测数据和新型气象粒子模型进行天气场重建。

Weather field reconstruction using aircraft surveillance data and a novel meteo-particle model.

机构信息

Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands.

出版信息

PLoS One. 2018 Oct 3;13(10):e0205029. doi: 10.1371/journal.pone.0205029. eCollection 2018.

Abstract

Wind and temperature data are important parameters in aircraft performance studies. The lack of accurate measurements of these parameters forces researchers to rely on numerical weather prediction models, which are often filtered for a larger area with decreased local accuracy. Aircraft, however, also transmit information related to weather conditions, in response to interrogation by air traffic controller surveillance radars. Although not intended for this purpose, aircraft surveillance data contains information that can be used for weather models. This paper presents a method that can be used to reconstruct a weather field from surveillance data that can be received with a simple 1090 MHz receiver. Throughout the paper, we answer two main research questions: how to accurately infer wind and temperature from aircraft surveillance data, and how to reconstruct a real-time weather grid efficiently. We consider aircraft as moving sensors that measure wind and temperature conditions indirectly at different locations and flight levels. To address the first question, aircraft barometric altitude, ground velocity, and airspeed are decoded from down-linked surveillance data. Then, temperature and wind observations are computed based on aeronautical speed conversion equations. To address the second question, we propose a novel Meteo-Particle (MP) model for constructing the wind and temperature fields. Short-term local prediction is also possible by employing a predictor layer. Using an unseen observation test dataset, we are able to validate that the mean absolute errors of inferred wind and temperature using MP model are 67% and 26% less than using the interpolated model based on GFS reanalysis data.

摘要

风温和温度数据是飞机性能研究中的重要参数。由于缺乏对这些参数的精确测量,研究人员不得不依赖数值天气预报模型,而这些模型通常是针对更大的区域进行过滤的,因此局部精度会降低。然而,飞机也会传输与天气状况有关的信息,以响应空中交通管制员监视雷达的询问。尽管飞机监视数据不是为此目的而设计的,但其中包含的信息可用于天气模型。本文提出了一种可以从监视数据中重建天气场的方法,该方法可以使用简单的 1090 MHz 接收器接收。在整篇文章中,我们回答了两个主要的研究问题:如何从飞机监视数据中准确推断风温和温度,以及如何有效地重建实时天气网格。我们将飞机视为移动传感器,它们可以在不同位置和飞行高度间接测量风温和温度条件。为了解决第一个问题,从下传的监视数据中解码飞机的气压高度、地面速度和空速。然后,根据航空速度转换方程计算温度和风速观测值。为了解决第二个问题,我们提出了一种新颖的气象粒子 (MP) 模型来构建风温和温度场。通过使用预测器层,也可以进行短期局部预测。使用看不见的观测测试数据集,我们能够验证使用 MP 模型推断的风温和温度的平均绝对误差分别比使用基于 GFS 再分析数据的插值模型低 67%和 26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2499/6169967/b88027fcd859/pone.0205029.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验