Suppr超能文献

基于高斯过程回归的飞机测风数据风速场估计

Wind velocity field estimation from aircraft derived data using Gaussian process regression.

机构信息

School of Telecommunication Engineering, Rey Juan Carlos University, Fuenlabrada, Madrid, Spain.

Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.

出版信息

PLoS One. 2022 Oct 31;17(10):e0276185. doi: 10.1371/journal.pone.0276185. eCollection 2022.

Abstract

Wind velocity field knowledge is crucial for the future air traffic management paradigm and is key in many applications, such as aircraft performance studies. This paper addresses the problem of spatio-temporal windc velocity field estimation. The north and east wind components within a given air space are estimated as a function of time. Both wind velocity field reconstruction in space for a past or present time instant and short-term prediction are performed. Wind data are obtained indirectly from the states of the aircraft broadcast by the Mode-S and ADS-B aircraft surveillance systems. The Gaussian process regression method, which is a flexible and universal estimator, is employed to solve both problems. Under general conditions, the method is statistically consistent, meaning that the method converges to the ground truth when increasingly more data are available, which is especially interesting, since aircraft data availability is expected to grow in the future through the deployment of the European System-Wide Information Management. Besides estimation, the Gaussian process regression method provides the probability distribution of any particular estimate, allowing confidence intervals to be computed. Moreover, the spatial modelling is performed using raw data without relying on grids and estimation can be performed at any spatio-temporal location. Furthermore, since the training phase of the method described in this paper is fast, requiring less than 5 minutes on a standard desktop computer, it can be used online to continuously track the state of the wind velocity field, thus allowing for data assimilation. In the case study presented in this paper, the Gaussian process regression method is tested on different days with different wind intensities. The available data set is split into several training and testing data sets, which are used to check the consistency of the results of wind velocity field reconstruction and prediction. Finally, the Gaussian process regression method is validated using the European Centre for Medium-Range Weather Forecasts ERA5 meteorological reanalysis data. The obtained results show that Gaussian process regression can be used to reliably estimate the wind velocity field from aircraft derived data.

摘要

风速场知识对于未来的空中交通管理范式至关重要,并且在许多应用中都很关键,例如飞机性能研究。本文解决了时空风速场估计的问题。给定空间内的北向和东向风速分量被估计为时间的函数。既进行了过去或现在时刻的空间风速场重建,也进行了短期预测。风数据是通过 Mode-S 和 ADS-B 飞机监视系统广播的飞机状态间接获得的。使用高斯过程回归方法来解决这两个问题,该方法是一种灵活通用的估计器。在一般条件下,该方法具有统计一致性,即当可用的数据越来越多时,方法会收敛到真实值,这一点特别有趣,因为通过部署欧洲全系统信息管理,预计未来飞机数据的可用性将会增加。除了估计之外,高斯过程回归方法还提供了任何特定估计的概率分布,从而可以计算置信区间。此外,空间建模是使用原始数据进行的,无需依赖网格,并且可以在任何时空位置进行估计。此外,由于本文中描述的方法的训练阶段非常快,在标准台式计算机上不到 5 分钟即可完成,因此可以在线使用它来连续跟踪风速场的状态,从而实现数据同化。在本文介绍的案例研究中,高斯过程回归方法在不同天气条件和不同风速强度下进行了测试。可用数据集被分为几个训练和测试数据集,用于检查风速场重建和预测结果的一致性。最后,使用欧洲中期天气预报中心的 ERA5 气象再分析数据对高斯过程回归方法进行了验证。得到的结果表明,高斯过程回归可以可靠地从飞机衍生数据中估计风速场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0269/9621445/ed1036b252b8/pone.0276185.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验