Angelani Carla R, Carabias Pablo, Cruz Karen M, Delfino José M, de Sautu Marilina, Espelt María V, Ferreira-Gomes Mariela S, Gómez Gabriela E, Mangialavori Irene C, Manzi Malena, Pignataro María F, Saffioti Nicolás A, Salvatierra Fréchou Damiana M, Santos Javier, Schwarzbaum Pablo J
Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina.
Biochem Mol Biol Educ. 2018 Sep;46(5):502-515. doi: 10.1002/bmb.21139. Epub 2018 Oct 3.
Metabolic control analysis (MCA) is a promising approach in biochemistry aimed at understanding processes in a quantitative fashion. Here the contribution of enzymes and transporters to the control of a given pathway flux and metabolite concentrations is determined and expressed quantitatively by means of numerical coefficients. Metabolic flux can be influenced by a wide variety of modulators acting on one or more metabolic steps along the pathway. We describe a laboratory exercise to study metabolic regulation of human erythrocytes (RBCs). Within the framework of MCA, students use these cells to determine the sensitivity of the glycolytic flux to two inhibitors (iodoacetic acid: IA, and iodoacetamide: IAA) known to act on the enzyme glyceraldehyde-3-phosphate-dehydrogenase. Glycolytic flux was estimated by determining the concentration of extracellular lactate, the end product of RBC glycolysis. A low-cost colorimetric assay was implemented, that takes advantage of the straightforward quantification of the absorbance signal from the photographic image of the multi-well plate taken with a standard digital camera. Students estimate flux response coefficients for each inhibitor by fitting an empirical function to the experimental data, followed by analytical derivation of this function. IA and IAA exhibit qualitatively different patterns, which are thoroughly analyzed in terms of the physicochemical properties influencing their action on the target enzyme. IA causes highest glycolytic flux inhibition at lower concentration than IAA. This work illustrates the feasibility of using the MCA approach to study key variables of a simple metabolic system, in the context of an upper level biochemistry course. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):502-515, 2018.
代谢控制分析(MCA)是生物化学中一种很有前景的方法,旨在以定量方式理解各种过程。在此,通过数值系数来确定并定量表达酶和转运蛋白对给定途径通量及代谢物浓度控制的贡献。代谢通量会受到作用于该途径一个或多个代谢步骤的多种调节剂的影响。我们描述了一项用于研究人类红细胞(RBC)代谢调节的实验练习。在MCA框架内,学生利用这些细胞来确定糖酵解通量对已知作用于甘油醛-3-磷酸脱氢酶的两种抑制剂(碘乙酸:IA和碘乙酰胺:IAA)的敏感性。通过测定红细胞糖酵解终产物细胞外乳酸的浓度来估算糖酵解通量。实施了一种低成本的比色测定法,该方法利用标准数码相机拍摄的多孔板照片的吸光度信号进行直接定量。学生通过将经验函数拟合到实验数据,然后对该函数进行解析推导,来估算每种抑制剂的通量响应系数。IA和IAA表现出定性不同的模式,根据影响它们对靶酶作用的物理化学性质对其进行了深入分析。IA在比IAA更低的浓度下导致最高的糖酵解通量抑制。这项工作说明了在高级生物化学课程的背景下,使用MCA方法研究简单代谢系统关键变量的可行性。© 2018国际生物化学与分子生物学联盟,46(5):502 - 515, 2018。