Suppr超能文献

基于聚类的多视图网络融合方法用于估计健康和失调人群的脑网络图谱。

Clustering-based multi-view network fusion for estimating brain network atlases of healthy and disordered populations.

机构信息

BASIRA Lab, CVIP Group, School of Science and Engineering, Computing, University of Dundee, UK; Computer Engineering Department Ecole Nationale d'ingénieurs de Sousse Sousse Tunisia.

BASIRA Lab, CVIP Group, School of Science and Engineering, Computing, University of Dundee, UK.

出版信息

J Neurosci Methods. 2019 Jan 1;311:426-435. doi: 10.1016/j.jneumeth.2018.09.028. Epub 2018 Sep 30.

Abstract

BACKGROUND

While several research methods were developed to estimate individual-based representations of brain connectional wiring (i.e., a connectome), traditionally captured using multimodal MRI data (e.g., functional and diffusion MRI), very limited works aimed to estimate brain network atlas for a population of connectomes. Estimating well-representative brain templates is a key step for group comparison studies. However, estimating a network atlas for a population of multi-source brain connectomes lying on different manifolds is absent.

NEW METHOD

To fill this gap, we propose a cluster-based multi-view brain connectivity fusion framework to estimate a brain network atlas for a population of multi-view brain networks, where each view captures a specific facet of the brain construct. Specifically, given a population of subjects, each with multi-view networks, we first non-linearly fuse multi-view networks into a single fused network for each subject. Then, we cluster the fused networks to identify individuals sharing similar connectional traits in an unsupervised way, which are next averaged within each cluster to generate a representative network atlas. Finally, we construct the final multi-view network atlas by averaging the obtained templates of all clusters.

RESULTS

We evaluated our method on both healthy and disordered populations (with autism and dementia) and spotted differences between network atlases for healthy and autistic groups.

COMPARISON WITH EXISTING METHODS AND CONCLUSIONS

Compared to other baseline methods, our fusion strategy achieved the best results in terms of template centeredness and population representativeness.

摘要

背景

虽然已经开发了几种研究方法来估计基于个体的大脑连接布线表示(即连接组),但这些方法传统上都是使用多模态 MRI 数据(例如功能和扩散 MRI)来捕获的,只有非常有限的工作旨在估计连接组的大脑网络图谱。估计具有良好代表性的大脑模板是进行组间比较研究的关键步骤。然而,对于位于不同流形上的多源大脑连接组,目前还没有方法可以估计大脑网络图谱。

新方法

为了填补这一空白,我们提出了一种基于聚类的多视图脑连接融合框架,用于估计多视图脑网络群体的大脑网络图谱,其中每个视图捕捉大脑结构的特定方面。具体来说,对于一组具有多视图网络的个体,我们首先将多视图网络非线性地融合为每个个体的单个融合网络。然后,我们对融合网络进行聚类,以无监督的方式识别具有相似连接特征的个体,然后在每个聚类中对这些个体进行平均,以生成一个代表性的网络图谱。最后,我们通过平均所有聚类的获得的模板来构建最终的多视图网络图谱。

结果

我们在健康和紊乱人群(自闭症和痴呆症)上评估了我们的方法,并发现了健康组和自闭症组之间网络图谱的差异。

与现有方法的比较和结论

与其他基线方法相比,我们的融合策略在模板中心性和群体代表性方面取得了最佳结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验