Suppr超能文献

细菌黄素依赖酶的完全生物转化级联反应用于脱卤和脱硝。

A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes.

机构信息

From the School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210 and.

the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand.

出版信息

J Biol Chem. 2018 Nov 30;293(48):18525-18539. doi: 10.1074/jbc.RA118.005538. Epub 2018 Oct 3.

Abstract

Halogenated phenol and nitrophenols are toxic compounds that are widely accumulated in the environment. Enzymes in the operon from the bacterium DTP0602 have the potential for application as biocatalysts in the degradation of many of these toxic chemicals. HadA monooxygenase previously was identified as a two-component reduced FAD (FADH)-utilizing monooxygenase with dual activities of dehalogenation and denitration. However, the partner enzymes of HadA, that is, the flavin reductase and quinone reductase that provide the FADH for HadA and reduce quinone to hydroquinone, remain to be identified. In this report, we overexpressed and purified the flavin reductases, HadB and HadX, to investigate their functional and catalytic properties. Our results indicated that HadB is an FMN-dependent quinone reductase that converts the quinone products from HadA to hydroquinone compounds that are more stable and can be assimilated by downstream enzymes in the pathway. Transient kinetics indicated that HadB prefers NADH and menadione as the electron donor and acceptor, respectively. We found that HadX is an FAD-bound flavin reductase, which can generate FADH for HadA to catalyze dehalogenation or denitration reactions. Thermodynamic and transient kinetic experiments revealed that HadX prefers to bind FAD over FADH and that HadX can transfer FADH from HadX to HadA via free diffusion. Moreover, HadX rapidly catalyzed NADH-mediated reduction of flavin and provided the FADH for a monooxygenase of a different system. Combination of all three flavin-dependent enzymes, HadA/HadB/HadX, reconstituted an effective dehalogenation and denitration cascade, which may be useful for future bioremediation applications.

摘要

卤代酚和硝基酚是广泛积累在环境中的有毒化合物。来自细菌 DTP0602 的操纵子中的酶具有作为许多这些有毒化学物质降解的生物催化剂的应用潜力。HadA 单加氧酶先前被鉴定为一种具有两种活性的二组分还原 FAD(FADH)利用单加氧酶,具有脱卤和脱硝双重活性。然而,HadA 的伴侣酶,即提供 FADH 的黄素还原酶和醌还原酶,以及将醌还原为氢醌,仍有待鉴定。在本报告中,我们过表达和纯化了黄素还原酶 HadB 和 HadX,以研究它们的功能和催化特性。我们的结果表明,HadB 是一种 FMN 依赖性醌还原酶,它将 HadA 的醌产物转化为更稳定的氢醌化合物,这些化合物可以被途径中的下游酶同化。瞬变动力学表明,HadB 优先选择 NADH 和甲萘醌分别作为电子供体和受体。我们发现,HadX 是一种 FAD 结合的黄素还原酶,它可以产生 FADH 供 HadA 催化脱卤或脱硝反应。热力学和瞬变动力学实验表明,HadX 优先与 FAD 结合而不是 FADH,并且 HadX 可以通过自由扩散将 FADH 从 HadX 转移到 HadA。此外,HadX 可快速催化黄素介导的 NADH 还原,并为不同系统的单加氧酶提供 FADH。三种黄素依赖性酶(HadA/HadB/HadX)的组合,重建了一个有效的脱卤和脱硝级联反应,这可能对未来的生物修复应用有用。

相似文献

1
A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes.
J Biol Chem. 2018 Nov 30;293(48):18525-18539. doi: 10.1074/jbc.RA118.005538. Epub 2018 Oct 3.
2
Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
J Biol Chem. 2017 Mar 24;292(12):4818-4832. doi: 10.1074/jbc.M116.774448. Epub 2017 Feb 3.
4
Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
FEBS J. 2023 Jan;290(1):176-195. doi: 10.1111/febs.16591. Epub 2022 Aug 17.
5
Role of conserved arginine in HadA monooxygenase for 4-nitrophenol and 4-chlorophenol detoxification.
Proteins. 2022 Jun;90(6):1291-1302. doi: 10.1002/prot.26312. Epub 2022 Feb 15.
7
The regulatory mechanism of 2,4,6-trichlorophenol catabolic operon expression by HadR in Ralstonia pickettii DTP0602.
Microbiology (Reading). 2013 Apr;159(Pt 4):665-677. doi: 10.1099/mic.0.063396-0. Epub 2013 Jan 24.
9
Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.
J Biol Chem. 2010 Jan 15;285(3):2014-27. doi: 10.1074/jbc.M109.056135. Epub 2009 Nov 13.
10
Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase.
Chembiochem. 2019 Dec 13;20(24):3020-3031. doi: 10.1002/cbic.201900413. Epub 2019 Sep 26.

引用本文的文献

1
Evolution of pollutant biodegradation.
Appl Microbiol Biotechnol. 2025 Feb 4;109(1):36. doi: 10.1007/s00253-025-13418-0.
2
Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase.
Biochemistry. 2023 Apr 4;62(7):1298-1306. doi: 10.1021/acs.biochem.3c00041. Epub 2023 Mar 9.
3
Mechanistic insights into the dual activities of the single active site of l-lysine oxidase/monooxygenase from sp. AIU 813.
J Biol Chem. 2020 Aug 7;295(32):11246-11261. doi: 10.1074/jbc.RA120.014055. Epub 2020 Jun 11.
5
Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
Protein Sci. 2019 Jan;28(1):8-29. doi: 10.1002/pro.3525.

本文引用的文献

1
Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation.
Chem Sci. 2018 Aug 8;9(38):7468-7482. doi: 10.1039/c8sc01482e. eCollection 2018 Oct 14.
2
Kinetic Characterization of PA1225 from Pseudomonas aeruginosa PAO1 Reveals a New NADPH:Quinone Reductase.
Biochemistry. 2018 May 29;57(21):3050-3058. doi: 10.1021/acs.biochem.8b00090. Epub 2018 May 11.
3
NADPH-Driven Organohalide Reduction by a Nonrespiratory Reductive Dehalogenase.
Biochemistry. 2018 Jun 26;57(25):3493-3502. doi: 10.1021/acs.biochem.8b00255. Epub 2018 Jun 13.
4
Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes.
Chem Rev. 2018 Feb 28;118(4):1742-1769. doi: 10.1021/acs.chemrev.7b00650. Epub 2018 Jan 11.
5
Identification of the upstream 4-chlorophenol biodegradation pathway using a recombinant monooxygenase from Arthrobacter chlorophenolicus A6.
Bioresour Technol. 2017 Dec;245(Pt B):1800-1807. doi: 10.1016/j.biortech.2017.05.006. Epub 2017 May 4.
6
Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
J Biol Chem. 2017 Mar 24;292(12):4818-4832. doi: 10.1074/jbc.M116.774448. Epub 2017 Feb 3.
7
The mechanism of catalysis by type-II NADH:quinone oxidoreductases.
Sci Rep. 2017 Jan 9;7:40165. doi: 10.1038/srep40165.
9
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368. doi: 10.1093/nar/gkw937. Epub 2016 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验