Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.
Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
Nat Commun. 2018 Oct 3;9(1):4057. doi: 10.1038/s41467-018-06329-4.
The utility of thiourea catalysis in selective glycosylation strategies has gained significant momentum lately due to its versatility in hydrogen bonding or anionic recognition activation modes. The use of these non-covalent interactions constitute a powerful means to construct glycosidic linkages as it mimics physiologically occurring glycosyltransferases. However, glycosyl donor activation through the currently employed catalysts is moderate such that, in general, catalyst loadings are rather high in these transformations. In addition, thiourea catalysis has not been well explored for the synthesis of furanosides. Herein, we demonstrate an ultra-low loadings stereoselective and stereospecific thiourea catalyzed strain-release furanosylation and pyranosylation strategy. Our ultra-low organocatalyzed furanosylation enables a multicatalytic strategy, which opens up a unique avenue towards rapid diversification of synthetic glycosides. In-situ NMR monitoring unravel insights into unknown reaction intermediates and initial rate kinetic studies reveal a plausible synergistic hydrogen bonding/Brønsted acid activation mode.
由于硫脲在氢键或阴离子识别激活模式中的多功能性,其在选择性糖基化策略中的应用最近得到了极大的关注。这些非共价相互作用的使用构成了构建糖苷键的有力手段,因为它模拟了生理上发生的糖基转移酶。然而,通过目前使用的催化剂对糖基供体的激活是适度的,因此,在这些转化中,通常催化剂的负载量相当高。此外,硫脲催化在呋喃糖苷的合成中尚未得到很好的探索。在此,我们展示了一种超低负载立体选择性和立体专一性硫脲催化应变释放呋喃基化和吡喃基化策略。我们的超低有机催化呋喃基化能够实现多催化策略,为合成糖苷的快速多样化开辟了一条独特的途径。原位 NMR 监测揭示了未知反应中间体的见解,初始速率动力学研究揭示了一种合理的协同氢键/布朗斯台德酸激活模式。