Suppr超能文献

基于切片的动态匀场在脑和脊髓 fMRI 中的应用。

Dynamic per slice shimming for simultaneous brain and spinal cord fMRI.

机构信息

Department of Bioengineering, Stanford University, Stanford, California.

Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California.

出版信息

Magn Reson Med. 2019 Feb;81(2):825-838. doi: 10.1002/mrm.27388. Epub 2018 Oct 4.

Abstract

PURPOSE

Simultaneous brain and spinal cord functional MRI is emerging as a new tool to study the central nervous system but is challenging. Poor B homogeneity and small size of the spinal cord are principal obstacles to this nascent technology. Here we extend a dynamic shimming approach, first posed by Finsterbusch, by shimming per slice for both the brain and spinal cord.

METHODS

We shim dynamically by a simple and fast optimization of linear field gradients and frequency offset separately for each slice in order to minimize off-resonance for both the brain and spinal cord. Simultaneous acquisition of brain and spinal cord fMRI is achieved with high spatial resolution in the spinal cord by means of an echo-planar RF pulse for reduced FOV. Brain slice acquisition is full FOV.

RESULTS

T2*-weighted images of brain and spinal cord are acquired with high clarity and minimal observable image artifacts. Fist-clenching fMRI experiments reveal task-consistent activation in motor cortices, cerebellum, and C6-T1 spinal segments.

CONCLUSIONS

High quality functional results are obtained for a sensory-motor task. Consistent activation in both the brain and spinal cord is observed at individual levels, not only at group level. Because reduced FOV excitation is applicable to any spinal cord section, future continuation of these methods holds great potential.

摘要

目的

同时进行脑和脊髓的功能磁共振成像作为研究中枢神经系统的新工具正在兴起,但具有挑战性。较差的 B 同质性和脊髓较小的尺寸是这项新兴技术的主要障碍。在这里,我们扩展了 Finsterbusch 首次提出的动态匀场方法,对大脑和脊髓的每个切片进行逐片匀场。

方法

我们通过单独对每个切片的线性磁场梯度和频率偏移进行简单而快速的优化来动态匀场,以最小化脑和脊髓的离共振。通过用于减小视场的回波平面 RF 脉冲,实现了高空间分辨率的脊髓和脑的同时 fMRI 采集。大脑切片采集是全视场。

结果

获得了具有高清晰度和最小可观察图像伪影的脑和脊髓 T2*-加权图像。握拳 fMRI 实验揭示了运动皮质、小脑和 C6-T1 脊髓节段的一致激活。

结论

对于感觉运动任务,获得了高质量的功能结果。在个体水平上观察到大脑和脊髓的一致激活,而不仅在群体水平上。由于减小的视场激发适用于任何脊髓节段,因此这些方法的进一步发展具有很大的潜力。

相似文献

1
Dynamic per slice shimming for simultaneous brain and spinal cord fMRI.
Magn Reson Med. 2019 Feb;81(2):825-838. doi: 10.1002/mrm.27388. Epub 2018 Oct 4.
2
A second-order and slice-specific linear shimming technique to improve spinal cord fMRI.
Magn Reson Imaging. 2023 Oct;102:151-163. doi: 10.1016/j.mri.2023.06.012. Epub 2023 Jun 21.
3
Automated slice-specific z-shimming for functional magnetic resonance imaging of the human spinal cord.
Hum Brain Mapp. 2022 Dec 15;43(18):5389-5407. doi: 10.1002/hbm.26018. Epub 2022 Aug 8.
4
Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord.
Neuroimage. 2012 Feb 1;59(3):2307-15. doi: 10.1016/j.neuroimage.2011.09.038. Epub 2011 Sep 22.
5
Improving T2*-weighted human cortico-spinal acquisitions with a dedicated algorithm for region-wise shimming.
Neuroimage. 2023 Mar;268:119868. doi: 10.1016/j.neuroimage.2023.119868. Epub 2023 Jan 13.
6
Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.
Neuroimage. 2015 Jan 15;105:462-72. doi: 10.1016/j.neuroimage.2014.11.011. Epub 2014 Nov 8.
7
Dynamic B0 shimming at 7 T.
Magn Reson Imaging. 2011 May;29(4):483-96. doi: 10.1016/j.mri.2011.01.002. Epub 2011 Mar 12.
8
Simultaneous multislice imaging with slice-specific z-shim.
Magn Reson Med. 2023 Aug;90(2):633-642. doi: 10.1002/mrm.29673. Epub 2023 Apr 24.
9
Dynamic shimming in the cervical spinal cord for multi-echo gradient-echo imaging at 3 T.
Neuroimage Rep. 2023 Mar;3(1):100150. doi: 10.1016/j.ynirp.2022.100150.
10
Application of an integrated radio-frequency/shim coil technology for signal recovery in fMRI.
Magn Reson Med. 2021 Dec;86(6):3067-3081. doi: 10.1002/mrm.28925. Epub 2021 Jul 20.

引用本文的文献

1
Reliability of task-based fMRI in the dorsal horn of the human spinal cord.
Imaging Neurosci (Camb). 2024 Aug 22;2. doi: 10.1162/imag_a_00273. eCollection 2024.
2
Simultaneous zero echo time fMRI of rat brain and spinal cord.
Magn Reson Med. 2025 Jul 17. doi: 10.1002/mrm.30633.
3
Impact of through-slice gradient optimization for dynamic slice-wise shimming in the cervico-thoracic spinal cord.
Magn Reson Med. 2025 Sep;94(3):1090-1102. doi: 10.1002/mrm.30543. Epub 2025 May 1.
4
Simultaneous zero echo time fMRI of rat brain and spinal cord.
bioRxiv. 2025 Mar 24:2025.03.20.644420. doi: 10.1101/2025.03.20.644420.
5
Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla.
Hum Brain Mapp. 2024 Feb 15;45(3):e26597. doi: 10.1002/hbm.26597.
7
Recent developments and future avenues for human corticospinal neuroimaging.
Front Hum Neurosci. 2024 Jan 25;18:1339881. doi: 10.3389/fnhum.2024.1339881. eCollection 2024.
8
Reliability of task-based fMRI in the dorsal horn of the human spinal cord.
bioRxiv. 2024 Jun 25:2023.12.22.572825. doi: 10.1101/2023.12.22.572825.
10
Spatial distribution of hand-grasp motor task activity in spinal cord functional magnetic resonance imaging.
Hum Brain Mapp. 2023 Dec 1;44(17):5567-5581. doi: 10.1002/hbm.26458. Epub 2023 Aug 22.

本文引用的文献

1
Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia.
Science. 2017 Oct 6;358(6359):105-108. doi: 10.1126/science.aan1221.
2
Investigating resting-state functional connectivity in the cervical spinal cord at 3T.
Neuroimage. 2017 Feb 15;147:589-601. doi: 10.1016/j.neuroimage.2016.12.072. Epub 2016 Dec 24.
3
SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data.
Neuroimage. 2017 Jan 15;145(Pt A):24-43. doi: 10.1016/j.neuroimage.2016.10.009. Epub 2016 Oct 5.
4
Denoising spinal cord fMRI data: Approaches to acquisition and analysis.
Neuroimage. 2017 Jul 1;154:255-266. doi: 10.1016/j.neuroimage.2016.09.065. Epub 2016 Sep 28.
5
Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.
Neuroimage. 2016 Jan 15;125:233-243. doi: 10.1016/j.neuroimage.2015.10.014. Epub 2015 Oct 18.
6
Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord.
Neuroscience. 2015 Oct 29;307:231-41. doi: 10.1016/j.neuroscience.2015.08.059. Epub 2015 Aug 31.
7
Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.
PLoS Biol. 2015 Jun 30;13(6):e1002186. doi: 10.1371/journal.pbio.1002186. eCollection 2015 Jun.
9
Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template.
Neuroimage. 2014 Nov 15;102 Pt 2:817-27. doi: 10.1016/j.neuroimage.2014.08.057. Epub 2014 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验