Suppr超能文献

自动化切片特异性 z 调谐在人体脊髓功能磁共振成像中的应用。

Automated slice-specific z-shimming for functional magnetic resonance imaging of the human spinal cord.

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

Hum Brain Mapp. 2022 Dec 15;43(18):5389-5407. doi: 10.1002/hbm.26018. Epub 2022 Aug 8.

Abstract

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, such as signal loss due to local magnetic field inhomogeneities. This issue can be addressed with slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities using a slice-specific gradient pulse. Here, we aim to address outstanding issues regarding this technique by evaluating its effects on several aspects that are directly relevant for spinal fMRI and by developing two automated procedures in order to improve upon the time-consuming and subjective nature of manual selection of z-shims: one procedure finds the z-shim that maximizes signal intensity in each slice of an EPI reference-scan and the other finds the through-slice field inhomogeneity for each EPI-slice in field map data and calculates the required compensation gradient moment. We demonstrate that the beneficial effects of z-shimming are apparent across different echo times, hold true for both the dorsal and ventral horn, and are also apparent in the temporal signal-to-noise ratio (tSNR) of EPI time-series data. Both of our automated approaches were faster than the manual approach, lead to significant improvements in gray matter tSNR compared to no z-shimming and resulted in beneficial effects that were stable across time. While the field-map-based approach performed slightly worse than the manual approach, the EPI-based approach performed as well as the manual one and was furthermore validated on an external corticospinal data-set (N > 100). Together, automated z-shimming may improve the data quality of future spinal fMRI studies and lead to increased reproducibility in longitudinal studies.

摘要

人体脊髓的功能磁共振成像(fMRI)面临许多挑战,例如由于局部磁场不均匀导致的信号丢失。这个问题可以通过切片特异性 z 调谐来解决,该方法使用切片特异性梯度脉冲来补偿不均匀性的去相位效应。在这里,我们旨在通过评估其对与脊髓 fMRI 直接相关的几个方面的影响,并开发两种自动化程序来解决该技术的突出问题,从而改进手动选择 z 调谐的耗时和主观性:一种程序在 EPI 参考扫描的每个切片中找到最大化信号强度的 z 调谐,另一种程序在磁场图数据中为每个 EPI 切片找到贯穿切片的场不均匀性,并计算所需的补偿梯度矩。我们证明 z 调谐的有益效果在不同的回波时间都很明显,适用于背角和腹角,并且在 EPI 时间序列数据的时间信号到噪声比(tSNR)中也很明显。我们的两种自动化方法都比手动方法更快,与不进行 z 调谐相比,灰质 tSNR 有显著提高,并在整个时间内保持稳定的有益效果。虽然基于场图的方法的性能略逊于手动方法,但基于 EPI 的方法的性能与手动方法相当,并且在外部皮质脊髓数据集中(N>100)得到了验证。总的来说,自动化 z 调谐可以提高未来脊髓 fMRI 研究的数据质量,并提高纵向研究的可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6239/9704784/150f682fca3d/HBM-43-5389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验