Instituto de Química Física Rocasolano, CSIC , Serrano 119 , 28006 Madrid , Spain.
CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5 , 28029 Madrid , Spain.
Anal Chem. 2018 Oct 16;90(20):12314-12321. doi: 10.1021/acs.analchem.8b04235. Epub 2018 Oct 4.
Many pathogens use host glycans as docking points for adhesion. Therefore, the use of compounds blocking carbohydrate-binding adhesins is a promising strategy for fighting infections. In this work, we describe a simple and rapid microarray approach for assessing the bacterial adhesion and efficiency of antiadhesive compounds targeting uropathogenic Escherichia coli UTI89, which displays mannose-specific adhesin FimH at the tip of fimbriae. The approach consisted in direct detection of live fluorescently labeled bacteria bound to mannan printed onto microarray slides. The utility of the arrays for binding/inhibition assays was first validated by comparing array-derived results for the model mannose-binding lectin concanavalin A with data obtained by isothermal titration calorimetry. Growth phase-dependent binding of UTI89 to the arrays was observed, proving the usefulness of the setup for detecting differences in FimH expression. Importantly, bacteria labeling and binding assays entailed minimal manipulation, helping to preserve the integrity of fimbriae. The efficiency of three different dodecamannosylated fullerenes as FimH-targeted antiadhesives was next evaluated in competition assays. The results revealed a superior activity of the mannofullerenes (5- to 18-fold per mannose residue) over methyl α-d-mannopyranoside. Moreover, differences in activity were detected for mannofullerenes differing in the structure/length of the spacer used for grafting mannose onto the fullerene core, further demonstrating the sensitivity of the assay. Overall, the approach combines straightforward and time-saving protocols for microarray preparation, bacteria labeling, and binding assays, and it can be easily tailored to other bacteria bearing carbohydrate-binding adhesins.
许多病原体将宿主糖作为黏附的附着点。因此,使用化合物阻断碳水化合物结合黏附素是对抗感染的一种很有前途的策略。在这项工作中,我们描述了一种简单快速的微阵列方法,用于评估靶向尿路致病性大肠杆菌 UTI89 的细菌黏附和抗黏附化合物的效率,该菌在菌毛顶端显示出特异性结合甘露糖的黏附素 FimH。该方法包括直接检测与微阵列载玻片上打印的甘露糖结合的活荧光标记细菌。首先通过将阵列衍生的结果与通过等温滴定量热法获得的模型甘露糖结合凝集素伴刀豆球蛋白 A 的数据进行比较,验证了该阵列用于结合/抑制测定的实用性。观察到 UTI89 与阵列的生长阶段依赖性结合,证明了该设置用于检测 FimH 表达差异的有用性。重要的是,细菌标记和结合测定需要最小的操作,有助于保持菌毛的完整性。接下来,在竞争测定中评估了三种不同的十二烷基化富勒烯作为 FimH 靶向抗黏附剂的效率。结果表明,mannofullerenes(相对于每个甘露糖残基 5-18 倍)比甲基α-d-甘露吡喃糖苷具有更高的活性。此外,还检测到用于将甘露糖接枝到富勒烯核心的间隔基的结构/长度不同的mannofullerenes的活性差异,进一步证明了该测定的敏感性。总体而言,该方法结合了用于微阵列制备、细菌标记和结合测定的简单且省时的方案,并且可以轻松地针对具有碳水化合物结合黏附素的其他细菌进行调整。