Campanero-Rhodes María Asunción, Palma Angelina Sa, Menéndez Margarita, Solís Dolores
Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
Front Microbiol. 2020 Jan 10;10:2909. doi: 10.3389/fmicb.2019.02909. eCollection 2019.
Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed. A main advantage of the microarray format is the inherent miniaturization of the method, which allows sensitive and high-throughput analyses with very small amounts of sample. Antibody and lectin microarrays have been used for examining bacterial glycosignatures, enabling bacteria identification and differentiation among strains. In addition, microarrays incorporating bacterial carbohydrate structures have served to evaluate their recognition by diverse host/phage/bacterial glycan-binding proteins, such as lectins, effectors of the immune system, or bacterial and phagic cell wall lysins, and to identify antigenic determinants for vaccine development. The list of samples printed in the arrays includes polysaccharides, lipopoly/lipooligosaccharides, (lipo)teichoic acids, and peptidoglycans, as well as sequence-defined oligosaccharide fragments. Moreover, microarrays of cell wall fragments and entire bacterial cells have been developed, which also allow to study bacterial glycosylation patterns. In this review, examples of the different microarray platforms and applications are presented with a view to give the current state-of-the-art and future prospects in this field.
细菌表面装饰有独特的碳水化合物结构,这些结构在不同物种和菌株之间可能存在很大差异。这些结构可被多种聚糖结合蛋白识别,在细菌与宿主及入侵噬菌体的相互作用中发挥重要作用,同时也在细菌微菌落和生物膜的形成中起作用。近年来,已开发出不同的微阵列方法来探索细菌表面聚糖及其与蛋白质的识别。微阵列形式的一个主要优点是该方法固有的小型化,这使得能够用极少量的样品进行灵敏且高通量的分析。抗体和凝集素微阵列已用于检测细菌糖谱,从而实现细菌的鉴定和菌株间的区分。此外,包含细菌碳水化合物结构的微阵列已用于评估它们被多种宿主/噬菌体/细菌聚糖结合蛋白(如凝集素、免疫系统效应物或细菌和噬菌体细胞壁溶素)的识别情况,并用于鉴定疫苗开发的抗原决定簇。阵列中打印的样品列表包括多糖、脂多糖/脂寡糖、(脂)磷壁酸、肽聚糖以及序列明确的寡糖片段。此外,已开发出细胞壁片段和完整细菌细胞的微阵列,这也有助于研究细菌的糖基化模式。在本综述中,将介绍不同微阵列平台和应用的实例,以期呈现该领域的当前技术水平和未来前景。