Yamashita T, Someya A
Biochim Biophys Acta. 1987 Mar 11;927(3):359-65. doi: 10.1016/0167-4889(87)90100-5.
The effect of calcium and/or magnesium on O2- production by guinea-pig eosinophils stimulated by the calcium ionophore A23187 was studied in comparison to neutrophils. In the absence of calcium, A23187 did not stimulate O2- production in resting eosinophils and neutrophils, regardless of the presence of extracellular magnesium. The A23187-induced O2- production by both cells increased linearly with extracellular Ca2+ concentrations. However, the concentration of Ca2+ required for maximum O2- production in eosinophils was about 10-times lower than that required of neutrophils. The addition of Mg2+ strongly inhibited O2- production, especially in eosinophils at low Ca2+ concentrations. The intracellular Ca2+ concentration was lower in eosinophils than in neutrophils in the resting state, and the enhancement of the intracellular Ca2+ concentration in response to A23187 was much lower in eosinophils than in neutrophils. The activation of the NADPH-dependent O2(-)-forming enzyme (NADPH oxidase) in eosinophils depended on extracellular calcium, as observed in O2- production. However, the NADPH oxidase activity in the particulate fraction from A23187-stimulated eosinophils was only slightly affected by the addition of divalent cations or EDTA. The compound W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), a calmodulin antagonist, significantly inhibited O2- production by both cells. On the other hand, the compound H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride), a protein kinase C antagonist, was less effective on O2- production than was W-7. H-7 had little effect on O2- production of eosinophils. These findings suggest that NADPH oxidase might be activated by a smaller Ca2+ concentration through the calmodulin-dependent reaction. This was not observed with protein kinase C, at least in eosinophils.