Centro de Desarrollo Agroindustrial del Tolima, CEDAGRITOL, Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
Centro de Desarrollo Agroindustrial del Tolima, CEDAGRITOL, Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
Int J Biol Macromol. 2018 Dec;120(Pt B):1834-1845. doi: 10.1016/j.ijbiomac.2018.09.211. Epub 2018 Oct 1.
Ulluco starch could be a promising renewable source for the production of biodegradable or edible films, as an alternative to plastic. This would mitigate the negative impact of plastics on the environment. The aim of this work was to study the effect of the starch concentration (SC), glycerol concentration (GC), and drying temperature (T) of ulluco starch-based films on their physical properties using stepwise regression (SR) and artificial neural network (ANN) approaches. The physical properties, such as the solubility (S), water vapour permeability (WVP), tensile strength (TS), elongation at break (EB), and transparency, of the edible films were satisfactory. The feed-forward and cascade-forward neural networks satisfactorily modelled the effect of the SC, GC, and T on the mechanical, optical, and water-affinity properties (WAP) of the edible films. ANN approach showed better results than SR in all the properties and ANN models were used in the sensitivity analysis and optimization. The global sensitivity analysis showed that the GC had the greatest influence on the physical properties. A desirability function-based optimization including WVP, EB and OP showed comparable values between experimental and estimated data. Based on the results of this study, the use of ulluco starch for the preparation of edible films has enormous potential for the replacement of non-biodegradable plastic packaging.
块茎粉淀粉可以作为一种有前途的可再生资源,用于生产可生物降解或可食用的薄膜,以替代塑料。这将减轻塑料对环境的负面影响。本工作旨在使用逐步回归(SR)和人工神经网络(ANN)方法研究块茎粉淀粉基薄膜的淀粉浓度(SC)、甘油浓度(GC)和干燥温度(T)对其物理性能的影响。可食用薄膜的物理性能如溶解度(S)、水蒸气透过率(WVP)、拉伸强度(TS)、断裂伸长率(EB)和透明度都令人满意。前馈和级联前馈神经网络能够很好地模拟 SC、GC 和 T 对可食用薄膜力学、光学和水分亲和性(WAP)特性的影响。ANN 方法在所有性能上均优于 SR,ANN 模型用于灵敏度分析和优化。全局灵敏度分析表明,GC 对物理性能的影响最大。基于 WVP、EB 和 OP 的理想函数优化包括了可食用薄膜的拉伸强度和断裂伸长率,实验数据和估计数据之间具有可比性。基于这项研究的结果,块茎粉淀粉在制备可食用薄膜方面具有巨大的潜力,可以替代不可生物降解的塑料包装。