Intelligent Systems and Networks Group; Imperial College London, London SW7 2AZ, UK.
Sensors (Basel). 2018 Oct 4;18(10):3327. doi: 10.3390/s18103327.
This paper presents a Deep Learning (DL) Cluster Structure for Management Decisions that emulates the way the brain learns and makes choices by combining different learning algorithms. The proposed model is based on the Random Neural Network (RNN) Reinforcement Learning for fast local decisions and Deep Learning for long-term memory. The Deep Learning Cluster Structure has been applied in the Cognitive Packet Network (CPN) for routing decisions based on Quality of Service (QoS) metrics (Delay, Loss and Bandwidth) and Cyber Security keys (User, Packet and Node) which includes a layer of DL management clusters (QoS, Cyber and CEO) that take the final routing decision based on the inputs from the DL QoS clusters and RNN Reinforcement Learning algorithm. The model has been validated under different network sizes and scenarios. The simulation results are promising; the presented DL Cluster management structure as a mechanism to transmit, learn and make packet routing decisions is a step closer to emulate the way the brain transmits information, learns the environment and takes decisions.
本文提出了一种用于管理决策的深度学习(DL)集群结构,通过结合不同的学习算法来模拟大脑的学习和决策方式。所提出的模型基于随机神经网络(RNN)强化学习进行快速局部决策和深度学习进行长期记忆。深度学习集群结构已应用于认知包网络(CPN)中,用于基于服务质量(QoS)指标(延迟、丢失和带宽)和网络安全密钥(用户、包和节点)的路由决策,其中包括一层 DL 管理集群(QoS、网络和 CEO),根据来自 DL QoS 集群和 RNN 强化学习算法的输入做出最终路由决策。该模型已在不同的网络规模和场景下进行了验证。模拟结果很有前景;所提出的作为传输、学习和做出数据包路由决策的机制的 DL 集群管理结构,更接近于模拟大脑传输信息、学习环境和做出决策的方式。