Suppr超能文献

用于荨麻疹诊断的计算机辅助医学决策系统

Computer-assisted Medical Decision-making System for Diagnosis of Urticaria.

作者信息

Christopher Jabez J, Nehemiah Harichandran Khanna, Arputharaj Kannan, Moses George L

机构信息

Ramanujan Computing Centre (JJC, HKN), Anna University, Chennai, Tamil Nadu, India.

Department of Information Science and Technology (KA), Anna University, Chennai, Tamil Nadu, India.

出版信息

MDM Policy Pract. 2016 Nov 9;1(1):2381468316677752. doi: 10.1177/2381468316677752. eCollection 2016 Jul-Dec.

Abstract

Urticaria is a common allergic disease that affects all age groups. Allergic disorders are diagnosed at allergy testing centers using skin tests. Though skin tests are the gold standard tests for allergy diagnosis, specialists are required to interpret the observations and test results. Hence, a computer-assisted medical decision-making (CMD) system can be used as an aid for decision support, by junior clinicians, in order to diagnose the presence of urticaria. The data from intradermal skin test results of 778 patients, who exhibited allergic symptoms, are considered for this study. Based on food habits and the history of a patient, 40 relevant allergens are tested. Allergen extracts are used for skin test. Ten independent runs of 10-fold cross-validation are used to train the system. The performance of the CMD system is evaluated using a set of test samples. The test samples were also presented to the junior clinicians at the allergy testing center to diagnose the presence or absence of urticaria. From a set of 91 features, a subset of 41 relevant features is chosen based on the relevance score of the feature selection algorithm. The Bayes classification approach achieves a classification accuracy of 96.92% over the test samples. The junior clinicians were able to classify the test samples with an average accuracy of 75.68%. A probabilistic classification approach is used for identifying the presence or absence of urticaria based on intradermal skin test results. In the absence of an allergy specialist, the CDM system assists junior clinicians in clinical decision making.

摘要

荨麻疹是一种影响所有年龄组的常见过敏性疾病。过敏性疾病在过敏检测中心通过皮肤测试进行诊断。尽管皮肤测试是过敏诊断的金标准测试,但需要专家来解读观察结果和测试结果。因此,计算机辅助医疗决策(CMD)系统可被初级临床医生用作决策支持的辅助工具,以诊断荨麻疹的存在。本研究考虑了778名出现过敏症状患者的皮内皮肤测试结果数据。根据患者的饮食习惯和病史,对40种相关过敏原进行测试。使用过敏原提取物进行皮肤测试。使用十次独立的十折交叉验证来训练系统。使用一组测试样本评估CMD系统的性能。测试样本也被提交给过敏检测中心的初级临床医生,以诊断荨麻疹的存在与否。从一组91个特征中,根据特征选择算法的相关性得分选择了41个相关特征的子集。贝叶斯分类方法在测试样本上实现了96.92%的分类准确率。初级临床医生对测试样本进行分类的平均准确率为75.68%。基于皮内皮肤测试结果,使用概率分类方法来识别荨麻疹的存在与否。在没有过敏专家的情况下,CDM系统协助初级临床医生进行临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bff8/6125052/8f8f4ef9afd4/10.1177_2381468316677752-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验