Duan Jingying, Qin Guohui, Min Luofu, Yang Yuchen, Wang Chengyang
School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , PR China.
ACS Appl Mater Interfaces. 2018 Nov 7;10(44):38084-38092. doi: 10.1021/acsami.8b13570. Epub 2018 Oct 19.
The photochemistry and sodium storage process have been generally considered as two separated approaches without strong connection. Here, ultraviolet (UV) irradiation was applied to sodium-ion batteries to improve the electrochemical performance of MoS-based composites. C@MoS@CN nanospheres consist of double protective structures, including inner hollow carbon spheres with a thin wall (C) and outer N-doping carbon nanosheets (CNs) derived from polydopamine. The special nanostructure possesses the virtues such as wide-interlayer spacing, flexible feature with great structure integrity, and rich active sites, which endow the fast electron transfer and shorten the ion diffusion pathways. Under the excitation of UV-light, intense electrons and holes are accumulated within MoS-based composites. The excited electrons can promote the preinsertion of Na. More importantly, dense electrons promote the electrolyte to decompose and hence form a stable solid electrolyte interphase in advance. After UV-light irradiation treatment in the electrolyte, the initial Coulombic efficiency of C@MoS@CN electrodes increased from 48.2 to 79.6%, and benefiting from the fine nanostructure, the C@MoS@CN electrode with UV irradiation treatment delivered a great rate performance 116 mAh g in 20 s and super cycling stability that 87.6% capacity was retained after 500 cycles at 500 mA g. When employed as anode for sodium-ion hybrid capacitors, it delivered a maximum power density of 6.84 kW kg (with 114.07 Wh kg energy density) and a maximum energy density of 244.15 Wh g (with 152.59 W kg power density). This work sheds new viewpoints into the applications of photochemistry in the development of energy storage devices.
光化学和钠存储过程通常被认为是两种没有紧密联系的独立方法。在此,将紫外线(UV)照射应用于钠离子电池,以改善基于MoS的复合材料的电化学性能。C@MoS@CN纳米球由双重保护结构组成,包括薄壁的内部空心碳球(C)和源自聚多巴胺的外部氮掺杂碳纳米片(CNs)。这种特殊的纳米结构具有诸如宽层间距、具有良好结构完整性的柔性特征以及丰富的活性位点等优点,这些优点赋予了快速的电子转移并缩短了离子扩散路径。在紫外光的激发下,基于MoS的复合材料中积累了大量的电子和空穴。激发的电子可以促进Na的预嵌入。更重要的是,密集的电子促进电解质分解,从而提前形成稳定的固体电解质界面。在电解质中进行紫外光照射处理后,C@MoS@CN电极的初始库仑效率从48.2%提高到79.6%,并且受益于精细的纳米结构,经过紫外光照射处理的C@MoS@CN电极在20秒内具有116 mAh g的出色倍率性能以及超循环稳定性,在500 mA g下500次循环后仍保留87.6%的容量。当用作钠离子混合电容器的阳极时,它提供了6.84 kW kg的最大功率密度(能量密度为114.07 Wh kg)和244.15 Wh g的最大能量密度(功率密度为152.59 W kg)。这项工作为光化学在储能器件开发中的应用提供了新的观点。