Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
Department of Physics and Astronomy, MSN 3F3, George Mason University, Fairfax, VA, 22030, USA.
Nat Commun. 2018 Oct 5;9(1):4102. doi: 10.1038/s41467-018-06575-6.
Material objects with micrometer or nanometer dimensions can exhibit much higher strength than macroscopic objects, but this strength rarely approaches the maximum theoretical strength of the material. Here, we demonstrate that faceted single-crystalline nickel (Ni) nanoparticles exhibit an ultrahigh compressive strength (up to 34 GPa) unprecedented for metallic materials. This strength matches the available estimates of Ni theoretical strength. Three factors are responsible for this record-high strength: the large Ni shear modulus, the smooth edges and corners of the nanoparticles, and the thin oxide layer on the particle surface. This finding is supported by molecular dynamics simulations that closely mimic the experimental conditions, which show that the mechanical failure of the strongest particles is triggered by homogeneous nucleation of dislocation loops inside the particle. The nucleation of a stable loop is preceded by multiple nucleation attempts accompanied by unusually large local atomic displacements caused by thermal fluctuations.
具有微米或纳米尺寸的物质物体可以表现出比宏观物体高得多的强度,但这种强度很少能接近材料的最大理论强度。在这里,我们证明了具有多面单晶镍(Ni)纳米颗粒表现出超高的抗压强度(高达 34GPa),这是金属材料前所未有的。这种强度与可用的 Ni 理论强度估计值相匹配。有三个因素导致了这种超高强度:大的 Ni 剪切模量、纳米颗粒的光滑边缘和拐角,以及颗粒表面的薄氧化层。分子动力学模拟支持这一发现,该模拟非常接近实验条件,表明最强颗粒的机械失效是由颗粒内部位错环的均匀形核引发的。稳定环的形核之前是多次形核尝试,伴随着由热波动引起的异常大的局部原子位移。