Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
ATSP Innovations, Champaign, IL, 61820, USA.
Sci Rep. 2018 Oct 5;8(1):14869. doi: 10.1038/s41598-018-33131-5.
Development of porous materials consisting of polymer host matrix enriched with bioactive ceramic particles that can initiate the reproduction of cellular organisms while maintaining in vivo mechanical reliability is a long-standing challenge for synthetic bone substitutes. We present hydroxyapatite (HA) reinforced aromatic thermosetting copolyester (ATSP) matrix bionanocomposite as a potential reconfigurable bone replacement material. The nanocomposite is fabricated by solid-state mixing a matching set of precursor oligomers with biocompatible pristine HA particles. During endothermic condensation polymerization reaction, the constituent oligomers form a mechanochemically robust crosslinked aromatic backbone while incorporating the HAs into a self-generated cellular structure. The morphological analysis demonstrates near-homogenous distributions of the pristine HAs within the matrix. The HAs behave as a crack-arrester which promotes a more deformation-tolerant formation with relatively enhanced material toughness. Chain relaxation dynamics of the nanocomposite matrix during glass transition is modified via HA-induced segmental immobilization. Chemical characterization of the polymer backbone composition reveals the presence of a hydrogen-advanced covalent interfacial coupling mechanism between the HAs and ATSP matrix. This report lays the groundwork for further studies on aromatic thermosetting copolyester matrix bionanocomposites which may find applications in various artificial bone needs.
开发由富含生物活性陶瓷颗粒的聚合物主体基质组成的多孔材料,在维持体内机械可靠性的同时能够引发细胞生物的再生,这是合成骨替代品的长期挑战。我们提出了一种羟基磷灰石(HA)增强的芳香族热固性共聚酯(ATSP)基体纳米复合材料,作为一种潜在的可重构骨替代材料。该纳米复合材料是通过将一组匹配的前驱体低聚物与生物相容的原始 HA 颗粒进行固态混合来制备的。在吸热缩聚反应过程中,构成低聚物的单体形成了一种机械化学稳定的交联芳香族主链,同时将 HA 纳入自生成的多孔结构中。形态分析表明原始 HA 在基质中具有近乎均匀的分布。HA 作为一种止裂剂,可以促进更具变形耐受性的形成,同时相对提高材料的韧性。纳米复合材料基质在玻璃化转变过程中的链松弛动力学通过 HA 诱导的链段固定化得到修饰。聚合物主链组成的化学特性分析表明,HA 与 ATSP 基质之间存在先进的氢键共价界面偶联机制。本报告为进一步研究芳香族热固性共聚酯基体纳米复合材料奠定了基础,该材料可能在各种人工骨需求中得到应用。