Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
Sci Rep. 2018 Oct 5;8(1):14884. doi: 10.1038/s41598-018-33077-8.
Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of approximately 95% in training and test data sets, respectively. The present successful application of serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS biomarker based on serum lipidomics.
基于越来越多的证据表明 MS 病理学涉及生物活性脂质代谢的改变,本分析旨在生成一个复杂的血清脂质生物标志物。使用无监督机器学习,实现为神经元网络的新兴自组织映射、群体智能和最小曲率嵌入,在包含不同类别 43 种不同脂质标志物血清浓度的输入数据空间中发现了一个聚类结构。该结构与临床诊断基本一致,表明数据为创建生物标志物(分类器)提供了基础。随后使用监督机器学习进行了评估,实现为随机森林和基于计算的 ABC 分析的特征选择。基于贝叶斯统计的生物标志物创建用于映射 MS 患者(n=102)或健康受试者(n=301)的诊断类别。通过特征选择的 8 个脂质标志物包括 GluCerC16、LPA20:4、HETE15S、LacCerC24:1、C16Sphinganine、生物蝶呤和内源性大麻素 PEA 和 OEA。开发了一个复杂的分类器或生物标志物,在训练和测试数据集分别预测 MS 的敏感性、特异性和准确性约为 95%。本研究成功地将血清脂质标志物浓度应用于 MS 数据,为基于血清脂质组学建立 MS 生物标志物的进一步努力提供了令人鼓舞的结果。