Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Front Immunol. 2024 Oct 18;15:1459502. doi: 10.3389/fimmu.2024.1459502. eCollection 2024.
Artificial intelligence (AI) has meant a turning point in data analysis, allowing predictions of unseen outcomes with precedented levels of accuracy. In multiple sclerosis (MS), a chronic inflammatory-demyelinating condition of the central nervous system with a complex pathogenesis and potentially devastating consequences, AI-based models have shown promising preliminary results, especially when using neuroimaging data as model input or predictor variables. The application of AI-based methodologies to serum/blood and CSF biomarkers has been less explored, according to the literature, despite its great potential. In this review, we aimed to investigate and summarise the recent advances in AI methods applied to body fluid biomarkers in MS, highlighting the key features of the most representative studies, while illustrating their limitations and future directions.
人工智能(AI)在数据分析方面意味着一个转折点,它能够以前所未有的准确度预测未知结果。在多发性硬化症(MS)中,中枢神经系统的一种慢性炎症脱髓鞘疾病,具有复杂的发病机制和潜在的破坏性后果,基于人工智能的模型已经显示出有希望的初步结果,尤其是在使用神经影像学数据作为模型输入或预测变量时。根据文献,尽管具有很大的潜力,但基于人工智能的方法在血清/血液和 CSF 生物标志物中的应用却鲜有人探索。在这篇综述中,我们旨在研究和总结人工智能方法在 MS 体液生物标志物中的最新进展,突出最具代表性研究的关键特征,同时说明其局限性和未来方向。