Suppr超能文献

院外心脏骤停患者自主循环恢复后神经功能结局的预测:快速而简约树分析的回顾性研究。

Prediction of neurological outcomes following the return of spontaneous circulation in patients with out-of-hospital cardiac arrest: Retrospective fast-and-frugal tree analysis.

机构信息

Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.

Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.

出版信息

Resuscitation. 2018 Dec;133:65-70. doi: 10.1016/j.resuscitation.2018.10.002. Epub 2018 Oct 4.

Abstract

AIM

Although various quantitative methods have been developed for predicting neurological prognosis in patients with out-of-hospital cardiac arrest (OHCA), they are too complex for use in clinical practice. We aimed to develop a simple decision rule for predicting neurological outcomes following the return of spontaneous circulation (ROSC) in patients with OHCA using fast-and-frugal tree (FFT) analysis.

METHODS

We performed a retrospective analysis of prospectively collected data archived in a multi-centre registry. Good neurological outcomes were defined as cerebral performance category (CPC) values of 1 or 2 at 28-day. Variables used for FFT analysis included age, sex, witnessed cardiac arrest, bystander cardiopulmonary resuscitation, initial shockable rhythm, prehospital defibrillation, prehospital ROSC, no flow time, low flow time, cause of arrest (cardiac or non-cardiac), pupillary light reflex, and Glasgow Coma Scale score after ROSC.

RESULTS

Among the 456 patients enrolled, 86 (18.9%) experienced good neurological outcomes. Prehospital ROSC (true = good), prompt or sluggish light reflex response after ROSC (true = good), and presumed cardiac cause (true = good, false = poor) were selected as nodes for the decision tree. Sensitivity, specificity, positive predictive value, and negative predictive value of the decision tree for predicting good neurological outcomes were 100% (42/42), 64.0% (119/186), 38.5% (42/109), and 100% (119/119) in the training set and 95.5% (42/44), 57.6% (106/184), 35.0% (42/120), and 98.1% (106/108) in the test set, respectively.

CONCLUSION

A simple decision rule developed via FFT analysis can aid clinicians in predicting neurological outcomes following ROSC in patients with OHCA.

摘要

目的

尽管已经开发出各种用于预测院外心脏骤停(OHCA)患者神经预后的定量方法,但它们过于复杂,无法在临床实践中使用。我们旨在使用快速简易树(FFT)分析为 OHCA 患者自主循环恢复(ROSC)后预测神经结局开发一个简单的决策规则。

方法

我们对一个多中心登记处中存档的前瞻性收集数据进行了回顾性分析。良好的神经结局定义为 28 天时的脑功能分类(CPC)值为 1 或 2。用于 FFT 分析的变量包括年龄、性别、目击者心脏骤停、旁观者心肺复苏、初始可除颤节律、院前除颤、院前 ROSC、无血流时间、低血流时间、骤停原因(心脏或非心脏)、瞳孔对光反射和 ROSC 后的格拉斯哥昏迷量表评分。

结果

在纳入的 456 名患者中,86 名(18.9%)经历了良好的神经结局。院前 ROSC(真=良好)、ROSC 后迅速或缓慢的光反射反应(真=良好)和假定的心脏原因(真=良好,假=不良)被选为决策树的节点。该决策树在训练集中预测良好神经结局的敏感性、特异性、阳性预测值和阴性预测值分别为 100%(42/42)、64.0%(119/186)、38.5%(42/109)和 100%(119/119),在测试集中分别为 95.5%(42/44)、57.6%(106/184)、35.0%(42/120)和 98.1%(106/108)。

结论

通过 FFT 分析开发的简单决策规则可以帮助临床医生预测 OHCA 患者 ROSC 后的神经结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验