Suppr超能文献

电突触耦合促进小脑浦肯野细胞的同步放电。

Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neuron. 2018 Nov 7;100(3):564-578.e3. doi: 10.1016/j.neuron.2018.09.018. Epub 2018 Oct 4.

Abstract

Correlated neuronal activity at various timescales plays an important role in information transfer and processing. We find that in awake-behaving mice, an unexpectedly large fraction of neighboring Purkinje cells (PCs) exhibit sub-millisecond synchrony. Correlated firing usually arises from chemical or electrical synapses, but, surprisingly, neither is required to generate PC synchrony. We therefore assessed ephaptic coupling, a mechanism in which neurons communicate via extracellular electrical signals. In the neocortex, ephaptic signals from many neurons summate to entrain spiking on slow timescales, but extracellular signals from individual cells are thought to be too small to synchronize firing. Here we find that a single PC generates sufficiently large extracellular potentials to open sodium channels in nearby PC axons. Rapid synchronization is made possible because ephaptic signals generated by PCs peak during the rising phase of action potentials. These findings show that ephaptic coupling contributes to the prevalent synchronization of nearby PCs.

摘要

在不同时间尺度上相关的神经元活动在信息传递和处理中起着重要作用。我们发现,在清醒行为的小鼠中,相当大比例的相邻浦肯野细胞(PC)表现出亚毫秒级的同步。相关的放电通常来自化学或电突触,但令人惊讶的是,生成 PC 同步既不需要化学突触也不需要电突触。因此,我们评估了电突触耦合,这是一种通过细胞外电信号进行通信的机制。在大脑皮层中,来自许多神经元的电突触信号在较慢的时间尺度上引发放电,但单个细胞的细胞外信号被认为太小,无法同步放电。在这里,我们发现单个 PC 产生的足够大的细胞外电势可以打开附近 PC 轴突中的钠通道。快速同步成为可能,是因为由 PC 产生的电突触信号在动作电位的上升相达到峰值。这些发现表明电突触耦合有助于附近 PC 的普遍同步。

相似文献

1
Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells.
Neuron. 2018 Nov 7;100(3):564-578.e3. doi: 10.1016/j.neuron.2018.09.018. Epub 2018 Oct 4.
2
Climbing fiber synapses rapidly and transiently inhibit neighboring Purkinje cells via ephaptic coupling.
Nat Neurosci. 2020 Nov;23(11):1399-1409. doi: 10.1038/s41593-020-0701-z. Epub 2020 Sep 7.
3
Disruption of cerebellar microzonal organization in GluD2 (GluRδ2) knockout mouse.
Front Neural Circuits. 2013 Aug 20;7:130. doi: 10.3389/fncir.2013.00130. eCollection 2013.
6
Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau.
Nat Neurosci. 2014 Feb;17(2):289-95. doi: 10.1038/nn.3624. Epub 2014 Jan 12.
7
Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei.
Nature. 2011 Dec 25;481(7382):502-5. doi: 10.1038/nature10732.
8
Sensorimotor Integration and Amplification of Reflexive Whisking by Well-Timed Spiking in the Cerebellar Corticonuclear Circuit.
Neuron. 2018 Aug 8;99(3):564-575.e2. doi: 10.1016/j.neuron.2018.06.028. Epub 2018 Jul 12.

引用本文的文献

1
Ephaptic conduction molding memory engrams.
BMC Biol. 2025 Jul 22;23(1):221. doi: 10.1186/s12915-025-02323-7.
2
Computing with electromagnetic fields rather than binary digits: a route towards artificial general intelligence and conscious AI.
Front Syst Neurosci. 2025 Jun 25;19:1599406. doi: 10.3389/fnsys.2025.1599406. eCollection 2025.
3
Cerebellar Purkinje cells control posture in larval zebrafish ().
Elife. 2025 Apr 24;13:RP97614. doi: 10.7554/eLife.97614.
4
The cerebellar deep nuclei: a patch for rate codes?
Front Neural Circuits. 2025 Apr 8;19:1548123. doi: 10.3389/fncir.2025.1548123. eCollection 2025.
5
An evolutionarily conserved cation channel tunes the sensitivity of gustatory neurons to ephaptic inhibition in .
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2413134122. doi: 10.1073/pnas.2413134122. Epub 2025 Jan 17.
8
Can ephapticity contribute to brain complexity?
PLoS One. 2024 Dec 5;19(12):e0310640. doi: 10.1371/journal.pone.0310640. eCollection 2024.
9
Increased understanding of complex neuronal circuits in the cerebellar cortex.
Front Cell Neurosci. 2024 Oct 21;18:1487362. doi: 10.3389/fncel.2024.1487362. eCollection 2024.
10
A Transmissive Theory of Brain Function: Implications for Health, Disease, and Consciousness.
NeuroSci. 2022 Aug 9;3(3):440-456. doi: 10.3390/neurosci3030032. eCollection 2022 Sep.

本文引用的文献

1
Sensorimotor Integration and Amplification of Reflexive Whisking by Well-Timed Spiking in the Cerebellar Corticonuclear Circuit.
Neuron. 2018 Aug 8;99(3):564-575.e2. doi: 10.1016/j.neuron.2018.06.028. Epub 2018 Jul 12.
3
Facilitation of mossy fibre-driven spiking in the cerebellar nuclei by the synchrony of inhibition.
J Physiol. 2017 Aug 1;595(15):5245-5264. doi: 10.1113/JP274321. Epub 2017 Jun 11.
4
Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons.
Neuron. 2016 Jul 20;91(2):312-9. doi: 10.1016/j.neuron.2016.05.037. Epub 2016 Jun 23.
5
Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models.
Curr Neuropharmacol. 2016;14(7):759-71. doi: 10.2174/1570159x14666160603115942.
6
Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.
Neuron. 2016 Jun 1;90(5):1043-56. doi: 10.1016/j.neuron.2016.03.029. Epub 2016 Apr 28.
8
High frequency synchrony in the cerebellar cortex during goal directed movements.
Front Syst Neurosci. 2015 Jul 21;9:98. doi: 10.3389/fnsys.2015.00098. eCollection 2015.
9
Cell type- and activity-dependent extracellular correlates of intracellular spiking.
J Neurophysiol. 2015 Jul;114(1):608-23. doi: 10.1152/jn.00628.2014. Epub 2015 May 20.
10
Molecular layer interneurons of the cerebellum: developmental and morphological aspects.
Cerebellum. 2015 Oct;14(5):534-56. doi: 10.1007/s12311-015-0648-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验