Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Neuron. 2018 Nov 7;100(3):564-578.e3. doi: 10.1016/j.neuron.2018.09.018. Epub 2018 Oct 4.
Correlated neuronal activity at various timescales plays an important role in information transfer and processing. We find that in awake-behaving mice, an unexpectedly large fraction of neighboring Purkinje cells (PCs) exhibit sub-millisecond synchrony. Correlated firing usually arises from chemical or electrical synapses, but, surprisingly, neither is required to generate PC synchrony. We therefore assessed ephaptic coupling, a mechanism in which neurons communicate via extracellular electrical signals. In the neocortex, ephaptic signals from many neurons summate to entrain spiking on slow timescales, but extracellular signals from individual cells are thought to be too small to synchronize firing. Here we find that a single PC generates sufficiently large extracellular potentials to open sodium channels in nearby PC axons. Rapid synchronization is made possible because ephaptic signals generated by PCs peak during the rising phase of action potentials. These findings show that ephaptic coupling contributes to the prevalent synchronization of nearby PCs.
在不同时间尺度上相关的神经元活动在信息传递和处理中起着重要作用。我们发现,在清醒行为的小鼠中,相当大比例的相邻浦肯野细胞(PC)表现出亚毫秒级的同步。相关的放电通常来自化学或电突触,但令人惊讶的是,生成 PC 同步既不需要化学突触也不需要电突触。因此,我们评估了电突触耦合,这是一种通过细胞外电信号进行通信的机制。在大脑皮层中,来自许多神经元的电突触信号在较慢的时间尺度上引发放电,但单个细胞的细胞外信号被认为太小,无法同步放电。在这里,我们发现单个 PC 产生的足够大的细胞外电势可以打开附近 PC 轴突中的钠通道。快速同步成为可能,是因为由 PC 产生的电突触信号在动作电位的上升相达到峰值。这些发现表明电突触耦合有助于附近 PC 的普遍同步。