Dipartimento di Fisica "E. Fermi" , Università di Pisa and Istituto per Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche , Largo Pontecorvo 3 , Pisa 56127 , Italy.
ISIS Neutron and Muon Facility , Rutherford Appleton Laboratory, Science & Technology Facilities Council , Didcot OX11 0QX , United Kingdom.
J Phys Chem B. 2018 Nov 1;122(43):9956-9961. doi: 10.1021/acs.jpcb.8b09355. Epub 2018 Oct 22.
One fundamental challenge in biophysics is to understand the connection between protein dynamics and its function. Part of the difficulty arises from the fact that proteins often present local atomic motions and collective dynamics on the same time scales, and challenge the experimental identification and quantification of different dynamic modes. Here, by taking lyophilized proteins as the example, we combined deuteration technique and neutron scattering to separate and characterize the self-motion of hydrogen and the collective interatomic motion of heavy atoms (C, O, N) in proteins on the pico-to-nanosecond time scales. We found that hydrogen atoms present an instrument-resolution-dependent onset for anharmonic motions, which can be ascribed to the thermal activation of local side-group motions. However, the protein heavy atoms exhibit an instrument-resolution-independent anharmonicity around 200 K, which results from unfreezing of the relaxation of the protein structures on the laboratory equilibrium time (100-1000 s), softening of the entire bio-macromolecules.
生物物理学的一个基本挑战是理解蛋白质动力学与其功能之间的联系。部分困难源于这样一个事实,即蛋白质通常同时呈现局部原子运动和集体动力学,这对不同动态模式的实验识别和量化提出了挑战。在这里,我们以冻干蛋白质为例,结合氘化技术和中子散射,在皮秒到纳秒的时间尺度上分离和表征蛋白质中氢原子的自运动和重原子(C、O、N)的集体原子间运动。我们发现,氢原子的非谐运动存在仪器分辨率依赖性的起始,这可以归因于局部侧基运动的热激活。然而,蛋白质重原子在 200 K 左右表现出与仪器分辨率无关的非谐性,这是由于蛋白质结构在实验室平衡时间(100-1000 s)上的弛豫被冻结,整个生物大分子变软所致。