文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于脑肿瘤手术的分子靶向近红外二区探针。

Molecular Targeted NIR-II Probe for Image-Guided Brain Tumor Surgery.

机构信息

Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection , Stanford University , Stanford , California , 94305-5344 , United States.

Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , 2200 Copenhagen N, Denmark.

出版信息

Bioconjug Chem. 2018 Nov 21;29(11):3833-3840. doi: 10.1021/acs.bioconjchem.8b00669. Epub 2018 Oct 23.


DOI:10.1021/acs.bioconjchem.8b00669
PMID:30296054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6363276/
Abstract

Optical imaging strategies for improving delineation of glioblastoma (GBM) is highly desired for guiding surgeons to distinguish cancerous tissue from healthy and precious brain tissue. Fluorescence imaging (FLI) in the second near-infrared window (NIR-II) outperforms traditional NIR-I imaging with better tissue penetration, higher spatial and temporal resolution, and less auto fluorescence and scattering. Because of high expression in GBM and many other tumors, urokinase Plasminogen Activator Receptor (uPAR) is an attractive and well proven target for FLI. Herein we aim to combine the benefit of a NIR-II fluorophore with a high affinity uPAR targeting small peptide. A targeted NIR-II fluorescent probe was developed by conjugating an in-house synthesized NIR-II fluorophore, CH1055, and a uPAR targeting peptide, AE105. To characterize the in vivo distribution and targeting properties, a dynamic imaging was performed in orthotopic GBM bearing nude mice ( n = 8). Additionally, fluorescence guided surgery of orthotopic GBM was performed in living animals. CH1055-4Glu-AE105 was easily synthesized with >75% yield and >98% HPLC evaluated purity. The retention time of the probe on analytical HPLC was 15.9 min and the product was verified by mass spectrometry. Dynamic imaging demonstrated that the uPAR targeting probe visualized orthotopic GBM through the intact skull with a tumor-to-background ratio (TBR) of 2.7 peaking at 96 h. Further, the orthotopic GBM was successfully resected in small animals guided by the NIR-II FLI. By using a small uPAR targeting NIR-II probe, FLI allows us to specifically image and detect GBM. A real-time imaging setup further renders FLI guided tumor resection, and the probe developed in this work is a promising candidate for clinical translation.

摘要

用于提高胶质母细胞瘤(GBM)边界勾画的光学成像策略,对于指导外科医生区分癌组织与健康和宝贵的脑组织非常重要。近红外二区(NIR-II)荧光成像是一种优于传统近红外一区(NIR-I)成像的方法,具有更好的组织穿透性、更高的时空分辨率以及更少的自体荧光和散射。由于在 GBM 和许多其他肿瘤中高表达,尿激酶型纤溶酶原激活物受体(uPAR)是荧光成像(FLI)的一个有吸引力且经过充分验证的靶点。在此,我们旨在将 NIR-II 荧光团的优势与高亲和力的 uPAR 靶向小肽结合起来。通过将我们自主合成的 NIR-II 荧光团 CH1055 与 uPAR 靶向肽 AE105 偶联,开发了一种靶向 NIR-II 荧光探针。为了表征其体内分布和靶向特性,在荷原位 GBM 的裸鼠(n=8)中进行了动态成像。此外,还在活体动物中进行了 NIR-II 荧光引导的原位 GBM 手术。CH1055-4Glu-AE105 很容易以 >75%的产率和 >98%的 HPLC 评估纯度合成。探针在分析 HPLC 上的保留时间为 15.9 分钟,产物通过质谱法验证。动态成像显示,该 uPAR 靶向探针通过完整的颅骨可视化了原位 GBM,肿瘤与背景的比值(TBR)在 96 小时时达到 2.7 的峰值。进一步,在 NIR-II FLI 的引导下,成功切除了小动物体内的原位 GBM。通过使用靶向 NIR-II 的小 uPAR 探针,FLI 使我们能够特异性地对 GBM 进行成像和检测。实时成像设置进一步实现了 FLI 引导的肿瘤切除,而本工作中开发的探针是临床转化的有前途的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/85c045d6f60c/bc-2018-006697_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/cd7da3647c7e/bc-2018-006697_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/fa236ae0dec5/bc-2018-006697_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/8fb3fc56a18e/bc-2018-006697_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/3acb78bf41e5/bc-2018-006697_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/85c045d6f60c/bc-2018-006697_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/cd7da3647c7e/bc-2018-006697_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/fa236ae0dec5/bc-2018-006697_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/8fb3fc56a18e/bc-2018-006697_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/3acb78bf41e5/bc-2018-006697_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c9/6363276/85c045d6f60c/bc-2018-006697_0005.jpg

相似文献

[1]
Molecular Targeted NIR-II Probe for Image-Guided Brain Tumor Surgery.

Bioconjug Chem. 2018-10-23

[2]
uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model.

Oncotarget. 2017-2-28

[3]
IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts.

Theranostics. 2021-5-21

[4]
PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe.

Eur J Nucl Med Mol Imaging. 2022-11

[5]
Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW.

Br J Neurosurg. 2015

[6]
Peptide-Based Optical uPAR Imaging for Surgery: In Vivo Testing of ICG-Glu-Glu-AE105.

PLoS One. 2016-2-1

[7]
Preoperative PET imaging and fluorescence-guided surgery of human glioblastoma using dual-labeled antibody targeting ET receptors in a preclinical mouse model: A theranostic approach.

Theranostics. 2024

[8]
First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using Ga-IRDye800CW-BBN.

Theranostics. 2018-4-3

[9]
Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery.

Mol Imaging Biol. 2020-6

[10]
DOT corrected fluorescence molecular tomography using targeted contrast agents for small animal tumor imaging.

J Xray Sci Technol. 2013

引用本文的文献

[1]
Nanoprobe-Based Near-Infrared II Optical Imaging for Guiding Precision Glioma Therapy.

Int J Nanomedicine. 2025-6-27

[2]
Dynamic multispectral NIR/SWIR for lymphovascular architectural and functional quantification.

J Biomed Opt. 2024-10

[3]
Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer.

Anticancer Agents Med Chem. 2024

[4]
Targeted imaging of uPAR expression in vivo with cyclic AE105 variants.

Sci Rep. 2023-10-11

[5]
Unveiling the Crucial Roles of O and ATP in Hepatic Ischemia-Reperfusion Injury Using Dual-Color/Reversible Fluorescence Imaging.

J Am Chem Soc. 2023-9-13

[6]
Biomedical applications of magnetosomes: State of the art and perspectives.

Bioact Mater. 2023-5-11

[7]
Photostable Small-Molecule NIR-II Fluorescent Scaffolds that Cross the Blood-Brain Barrier for Noninvasive Brain Imaging.

J Am Chem Soc. 2022-12-28

[8]
Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window.

Photoacoustics. 2022-11-15

[9]
Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics.

Pharmaceutics. 2022-2-21

[10]
Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation.

Front Bioeng Biotechnol. 2021-11-1

本文引用的文献

[1]
A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer.

Biomaterials. 2018-8-26

[2]
Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma.

Nanoscale. 2018-5-24

[3]
Preoperative Examination and Intraoperative Identification of Hepatocellular Carcinoma Using a Targeted Bimodal Imaging Probe.

Bioconjug Chem. 2018-3-22

[4]
Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery.

Langenbecks Arch Surg. 2018-2

[5]
Estimating progression-free survival in patients with glioblastoma using routinely collected data.

J Neurooncol. 2017-9-27

[6]
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging.

Nat Commun. 2017-5-19

[7]
A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma.

Cancer Lett. 2017-3-27

[8]
uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model.

Oncotarget. 2017-2-28

[9]
Safety, Dosimetry, and Tumor Detection Ability of Ga-NOTA-AE105: First-in-Human Study of a Novel Radioligand for uPAR PET Imaging.

J Nucl Med. 2017-3

[10]
Peptide-Based Optical uPAR Imaging for Surgery: In Vivo Testing of ICG-Glu-Glu-AE105.

PLoS One. 2016-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索