Suppr超能文献

用于人体姿态估计的分层上下文细化网络

Hierarchical Contextual Refinement Networks for Human Pose Estimation.

作者信息

Nie Xuecheng, Feng Jiashi, Xing Junliang, Xiao Shengtao, Yan Shuicheng

出版信息

IEEE Trans Image Process. 2018 Oct 5. doi: 10.1109/TIP.2018.2872628.

Abstract

Predicting human pose in the wild is a challenging problem due to high flexibility of joints and possible occlusion. Existing approaches generally tackle the difficulties either by holistic prediction or multi-stage processing, which suffer from poor performance for locating challenging joints or high computational cost. In this paper, we propose a new Hierarchical Contextual Refinement Network (HCRN) to robustly predict human poses in an efficient manner, where human body joints of different complexities are processed at different layers in a context hierarchy. Different from existing approaches, our proposed model predicts positions of joints from easy to difficult in a single stage through effectively exploiting informative contexts provided in the previous layer. Such approach offers two appealing advantages over state-of-the-arts: (1) more accurate than predicting all the joints together and (2) more efficient than multi-stage processing methods. We design a Contextual Refinement Unit (CRU) to implement the proposed model, which enables auto-diffusion of joint detection results to effectively transfer informative context from easy joints to difficult ones. In this way, difficult joints can be reliably detected even in presence of occlusion or severe distracting factors. Multiple CRUs are organized into a tree-structured hierarchy which is end-to-end trainable and does not require processing joints for multiple iterations. Comprehensive experiments evaluate the efficacy and efficiency of the proposed HCRN model to improve well-established baselines and achieve new state-of-the-art on multiple human pose estimation benchmarks.

摘要

由于关节的高度灵活性和可能的遮挡,在自然环境中预测人体姿态是一个具有挑战性的问题。现有方法通常通过整体预测或多阶段处理来解决这些困难,但在定位具有挑战性的关节时性能较差,或者计算成本较高。在本文中,我们提出了一种新的分层上下文细化网络(HCRN),以高效的方式稳健地预测人体姿态,其中不同复杂度的人体关节在上下文层次结构的不同层进行处理。与现有方法不同,我们提出的模型通过有效利用前一层提供的信息上下文,在单个阶段从易到难预测关节的位置。这种方法相对于现有技术具有两个吸引人的优点:(1)比一起预测所有关节更准确;(2)比多阶段处理方法更高效。我们设计了一个上下文细化单元(CRU)来实现所提出的模型,它能够使关节检测结果自动扩散,从而有效地将信息上下文从简单关节传递到困难关节。通过这种方式,即使在存在遮挡或严重干扰因素的情况下,也能可靠地检测到困难关节。多个CRU被组织成一个树形结构层次,该层次是端到端可训练的,并且不需要对关节进行多次迭代处理。综合实验评估了所提出的HCRN模型的有效性和效率,以改进成熟的基线,并在多个人体姿态估计基准上达到新的最先进水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验