两种调节剂 PA3898 和 PA2100 调节铜绿假单胞菌多药耐药 MexAB-OprM 和 EmrAB 外排泵及生物膜形成。
Two Regulators, PA3898 and PA2100, Modulate the Pseudomonas aeruginosa Multidrug Resistance MexAB-OprM and EmrAB Efflux Pumps and Biofilm Formation.
机构信息
Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand.
出版信息
Antimicrob Agents Chemother. 2018 Nov 26;62(12). doi: 10.1128/AAC.01459-18. Print 2018 Dec.
It is generally believed that the biofilm matrix itself acts as a molecular sieve or sink that contributes to significant levels of drug resistance, but it is becoming more apparent that multidrug efflux pumps induced during biofilm growth significantly enhance resistance levels. We present here a novel transcriptional regulator, PA3898, which controls biofilm formation and multidrug efflux pumps in A mutant of this regulator significantly reduced the ability of to produce biofilm and affected its fitness and pathogenesis in and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA3898 modulates essential virulence genes/pathways, including multidrug efflux pumps and phenazine biosynthesis. Chromatin immunoprecipitation sequencing (ChIP-seq) identified its DNA binding sequences and confirmed that PA3898 directly interacts with promoter regions of four genes/operons, two of which are and Coimmunoprecipitation revealed a regulatory partner of PA3898 as PA2100, and both are required for binding to DNA in electrophoretic mobility shift assays. PA3898 and PA2100 were given the names MdrR1 and MdrR2, respectively, as novel repressors of the multidrug efflux operon and activators for another multidrug efflux pump, EmrAB. The interaction between MdrR1 and MdrR2 at the promoter regions of their regulons was further characterized via localized surface plasmon resonance and DNA footprinting. These regulators directly repress the operon, independent of its well-established MexR regulator. Mutants of and caused increased resistance to multiple antibiotics in , validating the significance of these newly discovered regulators.
普遍认为生物膜基质本身充当分子筛或汇,导致显著水平的耐药性,但越来越明显的是,生物膜生长过程中诱导的多药外排泵显着提高了耐药水平。我们在这里介绍一种新型转录调节因子 PA3898,它控制生物膜形成和多药外排泵。该调节剂突变体中 PA3898 的缺失显着降低了 形成生物膜的能力,并影响了其在 和 BALB/c 小鼠肺部感染模型中的适应性和发病机制。转录组分析显示,PA3898 调节重要的毒力基因/途径,包括多药外排泵和吩嗪生物合成。染色质免疫沉淀测序 (ChIP-seq) 鉴定了其 DNA 结合序列,并证实 PA3898 直接与四个基因/操纵子的启动子区域相互作用,其中两个是 和 。共免疫沉淀显示 PA3898 的一个调节伙伴是 PA2100,两者都需要在电泳迁移率变动分析中结合 DNA。PA3898 和 PA2100 分别被命名为 MdrR1 和 MdrR2,作为 多药外排操纵子的新型抑制剂和另一种多药外排泵 EmrAB 的激活剂。通过局部表面等离子体共振和 DNA 足迹分析进一步表征了 MdrR1 和 MdrR2 在其调控子启动子区域之间的相互作用。这些调节剂直接抑制 操纵子,独立于其既定的 MexR 调节剂。 和 的突变体在 中对多种抗生素的耐药性增加,验证了这些新发现的调节剂的重要性。
相似文献
Antimicrob Agents Chemother. 2018-11-26
Arch Microbiol. 2016-8
引用本文的文献
Microbiol Resour Announc. 2024-1-17
Infect Immun. 2023-11-16
Antibiotics (Basel). 2023-4-8
本文引用的文献
Mol Microbiol. 2018-7-31
Mol Microbiol. 2017-12
Antimicrob Agents Chemother. 2017-7-25
Nucleic Acids Res. 2017-1-4
Proc Natl Acad Sci U S A. 2016-5-24
Nat Commun. 2016-2-12
World J Microbiol Biotechnol. 2014-10