Suppr超能文献

在多种多样的环境中热耐受性的演变。

Evolution of thermal tolerance in multifarious environments.

机构信息

Environmental Genomics Group, School of Biosciences, The University of Birmingham, Birmingham, UK.

Department of Genetics, University of Leicester, Leicester, UK.

出版信息

Mol Ecol. 2018 Nov;27(22):4529-4541. doi: 10.1111/mec.14890. Epub 2018 Oct 24.

Abstract

Species extinction rates are many times greater than the direst predictions made two decades ago by environmentalists, largely because of human impact. Major concerns are associated with the predicted higher recurrence and severity of extreme events, such as heat waves. Although tolerance to these extreme events is instrumental to species survival, little is known whether and how it evolves in natural populations, and to what extent it is affected by other environmental stressors. Here, we study physiological and molecular mechanisms of thermal tolerance over evolutionary times in multifarious environments. Using the practice of "resurrection ecology" on the keystone grazer Daphnia magna, we quantified genetic and plastic differences in physiological and molecular traits linked to thermal tolerance in historical and modern genotypes of the same population. This population experienced an increase in average temperature and occurrence of heat waves, in addition to dramatic changes in water chemistry, over five decades. On genotypes resurrected across the five decades, we measured plastic and genetic differences in CT , body size, Hb content and differential expression of four heat shock proteins after exposure to temperature as single stress and in combination with food levels and insecticide loads. We observed evolution of the critical thermal maximum and plastic response in body size, HSP expression and Hb content over time in a warming only scenario. Molecular and physiological responses to extreme temperature in multifarious environments were not predictable from the response to warming alone. Underestimating the effect of multiple stressors on thermal tolerance can lead to wrong estimates of species evolvability and persistence.

摘要

物种灭绝速度是二十年前环保主义者最悲观预测的数倍,主要是因为人类的影响。主要的担忧与极端事件(如热浪)发生的频率和严重程度预计会更高有关。尽管物种对这些极端事件的耐受性对于其生存至关重要,但人们对其在自然种群中的进化情况知之甚少,也不知道它在多大程度上受到其他环境压力源的影响。在这里,我们研究了在多样化的环境中,经过进化时间的热耐受性的生理和分子机制。通过对关键食草动物大型溞(Daphnia magna)的“复活生态学”实践,我们量化了与热耐受性相关的生理和分子特征的遗传和可塑性差异,这些特征与同一种群的历史和现代基因型有关。在过去五十年中,该种群经历了平均温度的上升和热浪的发生,同时水质也发生了巨大变化。我们对跨越五十年的基因型进行了复活,在单独暴露于温度以及与食物水平和杀虫剂负荷相结合的情况下,测量了 CT 、体型、血红蛋白含量和四种热休克蛋白的差异表达的可塑性和遗传差异。我们观察到在仅变暖的情况下,关键热极值和体型、HSP 表达和血红蛋白含量的可塑性反应随时间而进化。在多样化的环境中,对极端温度的分子和生理反应不能仅从对变暖的反应来预测。低估多种压力源对热耐受性的影响可能会导致对物种可进化性和持久性的错误估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验