State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis , China University of Petroleum , Qingdao 266580 , China.
College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37172-37180. doi: 10.1021/acsami.8b15940. Epub 2018 Oct 18.
Sodium-ion batteries (SIBs) attract more attention because of sodium's abundant availability, affordable price, and potential to be an effective anode material. Meanwhile, carbon-based materials provide the most promising anode materials. Because of the large radius of sodium ions, SIBs do not exhibit favorable electrochemical performance. Introducing heteroatoms into the carbon-lattice is an effective strategy to enlarge the interlayer space of carbon-based materials which can improve carbon's electrochemical performance. In addition, anode materials with a surface-induced capacitive process can enhance the SIB's electrochemical performance because its capacitive process increases the kinetics of ion diffusion. Here, we describe an SIB's anode material containing nitrogen and sulfur co-doped graphene sheets [denoted as poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT)/reduced graphene oxide (RGO)] which are synthesized via carbonization of PDMcT polymerized on the surface of GO. PDMcT/RGO exhibited high capacities (240 mA h g at 500 mA g), improved rate performance (144 mA h g at 10 A g), and good cycling stability (153 mA h g after 5000 cycles at 5000 mA g). These unique results are attributed to the enlarged interlayer spacing and electronic conductivity from the heteroatoms which facilitate the sodium ion's insertion and electron transport. These results represent that PDMcT/RGO is a great potential anode material for SIBs.
钠离子电池(SIBs)由于钠的丰富可用性、低廉的价格和作为有效阳极材料的潜力而受到更多关注。同时,碳基材料提供了最有前途的阳极材料。由于钠离子的半径较大,SIBs 表现出不佳的电化学性能。将杂原子引入碳晶格是扩大碳基材料层间距的有效策略,这可以提高碳的电化学性能。此外,具有表面诱导电容过程的阳极材料可以增强 SIB 的电化学性能,因为其电容过程增加了离子扩散的动力学。在这里,我们描述了一种含有氮和硫共掺杂石墨烯片的 SIB 阳极材料[表示为聚(2,5-二巯基-1,3,4-噻二唑)(PDMcT)/还原氧化石墨烯(RGO)],它是通过在 GO 表面聚合的 PDMcT 聚合物碳化合成的。PDMcT/RGO 表现出高容量(在 500 mA g 时为 240 mA h g)、改善的倍率性能(在 10 A g 时为 144 mA h g)和良好的循环稳定性(在 5000 mA g 时 5000 次循环后为 153 mA h g)。这些独特的结果归因于杂原子增大的层间距和电子导电性,这有利于钠离子的插入和电子传输。这些结果表明 PDMcT/RGO 是 SIBs 的一种很有前途的阳极材料。