Suppr超能文献

用于控制非兴奋性细胞钙内流的光遗传学方法

Optogenetic Approaches to Control Calcium Entry in Non-Excitable Cells

作者信息

He Lian, Zhang Qian, Zhou Yubin, Huang Yun

Abstract

The calcium ion serves as a versatile and universal second messenger to control a myriad of biological processes, including muscle contraction, neurotransmission, hormone secretion, immune cell activation, cell motility, and apoptosis [1–3]. The calcium release-activated calcium (CRAC) channel mediated by ORAI and stromal interaction molecule (STIM) constitutes one of the primary Ca entry routes in non-excitable cells [4–6] (see Chapter 2). The CRAC channel is regarded as a prototypical example of store-operated Ca entry (SOCE), in which the depletion of Ca store in the endoplasmic reticulum (ER) induces calcium influx from the extracellular space. Over the past decade, tremendous progress has been made with respect to the critical steps required to activate SOCE (Figure 8.1) [5–7]. Under resting conditions, the STIM1 luminal EF-SAM domain is loaded with Ca and exists largely as a monomer [8]. The STIM1 cytoplasmic domain (STIM1ct), consisting of a coiled-coil region (CC1), a minimal ORAI1-activating region (SOAR or CAD), and a C-terminal polybasic tail (PB), adopts a folded-back configuration that keeps itself inactive through autoinhibition [9,10]. Upon ER Ca store depletion, dissociation of Ca from the EF-SAM domain initiates a destabilization-coupled oligomerization process in the ER lumen [8]. Conformational changes in the canonical EF-hand Ca-binding motif disrupt the intramolecular interaction between the EF-hands and SAM domains, thereby causing aggregation of the luminal EF-SAM domains. The luminal domain oligomerization further triggers conformational changes that propagate throughout STIM1ct. STIM1ct redeploys itself and adopts a more extended conformation by exposing the SOAR/CAD domain, as well as the polybasic C-tail. Next, the activated STIM1 multimerizes and moves toward the ER-plasma membrane (PM) junctional sites, where it recruits and gates ORAI1 channels through direct physical association with ORAI1. This process is also facilitated by the interaction between its polybasic C-tail and the negatively charged phosphoinositides in the inner leaflet of the plasma membrane (see Chapters 2 and 3). Sustained Ca influx through ORAI1 channels activates downstream effectors such as calcineurin, a Ca-dependent phosphatase that dephosphorylates the nuclear factor of activated T cells (NFAT) and triggers the nuclear translocation of NFAT to regulate gene expression during lymphocyte activation [4] (see Chapter 5). Two critical steps during SOCE activation, oligomerization of STIM1 luminal domain and conformational switch within STIM1ct, can be mimicked by photosensitive domains that undergo light-inducible oligomerization or allosteric regulation to devise photoactivatable CRAC channels (termed Opto-CRAC), thereby enabling remote and optical control of calcium signaling [11–13]. Compared to the existing microbial opsin-based optogenetic tools, Opto-CRAC has several distinctive features such as the following: Unlike the widely used channelrhodopsin (ChR)-based tools [14] that exhibit less stringent ion selectivity and tend to perturb intracellular pH due to their high proton permeability, Opto-CRAC is engineered from a Ca channel that is regarded as one of the most Ca-selective ion channels (see Chapter 1). The Opto-CRAC tool is among the smallest optogenetic tools (<1 kb, compared to >2.2 kb of ChR) and is thus compatible with viral vectors used for gene delivery. Its tunable and relatively slow kinetics make Opto-CRAC most suitable for generating customized Ca oscillation patterns in non-excitable cell types, such as cells of the immune and hematopoietic systems. In this chapter, we present a brief overview of the design principles of Opto-CRAC constructs based on two different photoresponsive domains (CRY2 and LOV2) and illustrate how to use them to remotely control Ca influx with at high spatiotemporal precision and subsequent nuclear translocation of a master transcriptional factor, the nuclear factor of activated T cells (NFAT), to fine-tune NFAT-dependent gene expression and control the function of immune cells.

摘要

钙离子作为一种多功能且通用的第二信使,可控制无数生物过程,包括肌肉收缩、神经传递、激素分泌、免疫细胞激活、细胞运动和细胞凋亡[1 - 3]。由ORAI和基质相互作用分子(STIM)介导的钙释放激活钙(CRAC)通道是非兴奋性细胞中主要的钙内流途径之一[4 - 6](见第2章)。CRAC通道被视为储存操纵性钙内流(SOCE)的典型例子,其中内质网(ER)中钙储存的耗尽会诱导细胞外空间的钙内流。在过去十年中,关于激活SOCE所需的关键步骤(图8.1)[5 - 7]取得了巨大进展。在静息条件下,STIM1腔内EF - SAM结构域加载有钙,并且主要以单体形式存在[8]。STIM1细胞质结构域(STIM1ct)由一个卷曲螺旋区域(CC1)、一个最小的ORAI1激活区域(SOAR或CAD)和一个C末端多碱性尾巴(PB)组成,采用一种折回的构象,通过自身抑制使其保持无活性[9,10]。内质网钙储存耗尽后,钙从EF - SAM结构域解离,在内质网腔中启动一个去稳定化偶联的寡聚化过程[8]。经典EF手型钙结合基序的构象变化破坏了EF手型和SAM结构域之间的分子内相互作用,从而导致腔内EF - SAM结构域的聚集。腔内结构域的寡聚化进一步触发构象变化,并在整个STIM1ct中传播。STIM1ct重新部署自身,通过暴露SOAR/CAD结构域以及多碱性C末端尾巴,采用更伸展的构象。接下来,激活的STIM1多聚化并向内质网 - 质膜(PM)连接位点移动,在那里它通过与ORAI1的直接物理结合招募并开启ORAI1通道。其多碱性C末端尾巴与质膜内小叶中带负电荷的磷酸肌醇之间的相互作用也促进了这一过程(见第2章和第3章)。通过ORAI1通道持续的钙内流激活下游效应器,如钙调神经磷酸酶,一种钙依赖性磷酸酶,它使活化T细胞核因子(NFAT)去磷酸化,并在淋巴细胞激活过程中触发NFAT的核转位以调节基因表达[4](见第5章)。SOCE激活过程中的两个关键步骤,即STIM1腔内结构域的寡聚化和STIMlct内的构象转换,可以通过经历光诱导寡聚化或变构调节的光敏结构域来模拟,以设计光激活的CRAC通道(称为Opto - CRAC),从而实现对钙信号的远程和光学控制[11 - 13]。与现有的基于微生物视蛋白的光遗传学工具相比,Opto - CRAC具有以下几个独特特征:与广泛使用的基于通道视紫红质(ChR)的工具[14]不同,后者表现出不太严格的离子选择性,并且由于其高质子渗透性而倾向于扰乱细胞内pH值,Opto - CRAC是由一种被认为是最具钙选择性的离子通道之一的钙通道改造而来(见第1章)。Opto - CRAC工具是最小的光遗传学工具之一(<1 kb,而ChR>2.2 kb),因此与用于基因递送的病毒载体兼容。其可调谐且相对较慢的动力学使Opto - CRAC最适合在非兴奋性细胞类型中生成定制的钙振荡模式,例如免疫和造血系统的细胞。在本章中,我们简要概述了基于两种不同光响应结构域(CRY2和LOV2)的Opto - CRAC构建体的设计原理,并说明如何使用它们以高时空精度远程控制钙内流以及随后主转录因子活化T细胞核因子(NFAT)的核转位,以微调NFAT依赖性基因表达并控制免疫细胞的功能。

相似文献

6
CRAC channel-based optogenetics.基于 CRAC 通道的光遗传学。
Cell Calcium. 2018 Nov;75:79-88. doi: 10.1016/j.ceca.2018.08.007. Epub 2018 Sep 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验