Suppr超能文献

原位制备的超薄SiC/还原氧化石墨烯纳米片二维/二维异质结用于高效光催化还原CO并具有高CH选择性

In Situ-Fabricated 2D/2D Heterojunctions of Ultrathin SiC/Reduced Graphene Oxide Nanosheets for Efficient CO Photoreduction with High CH Selectivity.

作者信息

Han Cheng, Lei Yongpeng, Wang Bing, Wang Yingde

机构信息

Science and Technology on Advanced Ceramic Fiber and Composites, Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China.

State Key Laboratory for Powder Metallurgy & School of Aeronautics and Astronautics, Central South University, Changsha, 410083, P. R. China.

出版信息

ChemSusChem. 2018 Dec 20;11(24):4237-4245. doi: 10.1002/cssc.201802088. Epub 2018 Dec 6.

Abstract

Photoreduction of CO into fuel molecules such as CH represents a promising route to simultaneously explore renewable energy and alleviate global warming. However, the implementation of such a process is hampered by low product yields and poor selectivity. A 2D/2D heterojunction of ultrathin SiC and reduced graphene oxide (RGO) nanosheets was fabricated in situ for efficient and selective photoreduction of CO . Ultrathin SiC suppresses significant charge recombination in the bulk phase, thus providing more energetic electrons. The robust 2D/2D heterojunction allows fast transfer of energetic electrons from SiC to RGO. Combining the vital role of RGO in facilitating CO activation, the optimized SiC/RGO exhibits an electron-transfer rate of 58.17 μmol h  g towards CO reduction, 2.7 times that of pure SiC (20.25 μmol h  g ). About 92 % of the transferred electrons from SiC are devoted to generating CH (6.72 μmol h  g ). Such high efficiency and selectivity are mainly a result of the densely accumulated energetic electrons within RGO, which facilitate the eight-electron process to produce CH . This work will inspire the design of catalyst/cocatalyst systems for efficient and selective photoreduction of CO .

摘要

将CO光还原为CH等燃料分子是同时探索可再生能源和缓解全球变暖的一条有前景的途径。然而,这一过程的实施受到低产物产率和差的选择性的阻碍。原位制备了超薄SiC和还原氧化石墨烯(RGO)纳米片的二维/二维异质结,用于高效且选择性地光还原CO。超薄SiC抑制了体相中的显著电荷复合,从而提供了更多高能电子。坚固的二维/二维异质结允许高能电子从SiC快速转移到RGO。结合RGO在促进CO活化中的重要作用,优化后的SiC/RGO对CO还原表现出58.17 μmol h  g的电子转移速率,是纯SiC(20.25 μmol h  g)的2.7倍。从SiC转移的电子中约92%用于生成CH(6.72 μmol h  g)。如此高的效率和选择性主要是由于RGO内密集积累的高能电子,这促进了生成CH的八电子过程。这项工作将激发用于高效且选择性地光还原CO的催化剂/助催化剂体系的设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验