Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States.
Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, and Institute of Molecular Medicine and Bioengineering , National Chiao Tung University , Hsinchu , Taiwan 30068 , ROC.
J Am Chem Soc. 2018 Nov 7;140(44):14747-14752. doi: 10.1021/jacs.8b08070. Epub 2018 Oct 23.
Protein tyrosine phosphatase B (PtpB) from Mycobacterium tuberculosis (Mtb) extends the bacteria's survival in hosts and hence is a potential target for Mtb-specific drugs. To study how Mtb-specific sequence insertions in PtpB may regulate access to its active site through large-amplitude conformational changes, we performed free-energy calculations using an all-atom explicit solvent model. Corroborated by biochemical assays, the results show that PtpB's active site is controlled via an "either/or" compound conformational gating mechanism, an unexpected discovery that Mtb has evolved to bestow a single enzyme with such intricate logical operations. In addition to providing unprecedented insights for its active-site surroundings, the findings also suggest new ways of inactivating PtpB.
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)中的蛋白酪氨酸磷酸酶 B(PtpB)可延长细菌在宿主体内的存活时间,因此是针对 Mtb 的特异性药物的潜在靶点。为了研究 PtpB 中的 Mtb 特异性序列插入如何通过大幅度构象变化来调节其活性部位的进入,我们使用全原子显式溶剂模型进行了自由能计算。生化测定结果证实,PtpB 的活性部位通过“非此即彼”的复合构象门控机制进行控制,这一意外发现表明 Mtb 已经进化出这样一种复杂的逻辑操作,赋予单个酶如此复杂的逻辑操作。除了为其活性部位周围环境提供前所未有的见解外,这些发现还为失活 PtpB 提供了新的方法。