Raj Nixon, Click Timothy H, Yang Haw, Chu Jhih-Wei
Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China.
Department of Chemistry, Princeton University Princeton NJ 08544 USA.
Chem Sci. 2022 Jan 19;13(13):3688-3696. doi: 10.1039/d1sc06184d. eCollection 2022 Mar 30.
A protein's adaptive response to its substrates is one of the key questions driving molecular physics and physical chemistry. This work employs the recently developed structure-mechanics statistical learning method to establish a mechanical perspective. Specifically, by mapping all-atom molecular dynamics simulations onto the spring parameters of a backbone-side-chain elastic network model, the chemical moiety specific force constants (or mechanical rigidity) are used to assemble the rigidity graph, which is the matrix of inter-residue coupling strength. Using the S1A protease and the PDZ3 signaling domain as examples, chains of spatially contiguous residues are found to exhibit prominent changes in their mechanical rigidity upon substrate binding or dissociation. Such a mechanical-relay picture thus provides a mechanistic underpinning for conformational changes, long-range communication, and inter-domain allostery in both proteins, where the responsive mechanical hotspots are mostly residues having important biological functions or significant mutation sensitivity.
蛋白质对其底物的适应性反应是驱动分子物理学和物理化学的关键问题之一。这项工作采用最近开发的结构力学统计学习方法来建立一个力学视角。具体而言,通过将全原子分子动力学模拟映射到主链-侧链弹性网络模型的弹簧参数上,利用化学基团特异性力常数(或机械刚性)来组装刚性图,即残基间耦合强度矩阵。以S1A蛋白酶和PDZ3信号结构域为例,发现空间上连续的残基链在底物结合或解离时其机械刚性会发生显著变化。这样一种机械传递图景因此为蛋白质中的构象变化、长程通讯和结构域间变构提供了一个机制基础,其中响应性的机械热点大多是具有重要生物学功能或显著突变敏感性的残基。