Suppr超能文献

原肌球蛋白结构模体同种型特异性调节树突发育和突触形成。

Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation.

机构信息

Departments of Cell Biology.

Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, and.

出版信息

J Neurosci. 2018 Nov 28;38(48):10271-10285. doi: 10.1523/JNEUROSCI.3325-17.2018. Epub 2018 Oct 9.

Abstract

Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types. Three members of the Tmod family, Tmod1, Tmod2, and Tmod3 are expressed in the vertebrate CNS, but their function in neuronal development is largely unknown. In this study, we present evidence that Tmod1 and Tmod2 exhibit distinct roles in regulating spine development and dendritic arborization, respectively. Using rat hippocampal tissues from both sexes, we find that Tmod1 and Tmod2 are expressed with distinct developmental profiles: Tmod2 is expressed early during hippocampal development, whereas Tmod1 expression coincides with synaptogenesis. We then show that knockdown of Tmod2, but not Tmod1, severely impairs dendritic branching. Both Tmod1 and Tmod2 are localized to a distinct subspine region where they regulate local F-actin stability. However, the knockdown of Tmod1, but not Tmod2, disrupts spine morphogenesis and impairs synapse formation. Collectively, these findings demonstrate that regulation of the actin cytoskeleton by different members of the Tmod family plays an important role in distinct aspects of dendrite and spine development. The Tropomodulin family of molecules is best known for controlling the length and stability of actin myofilaments in skeletal muscles. While several Tropomodulin members are expressed in the brain, fundamental knowledge about their role in neuronal function is limited. In this study, we show the unique expression profile and subcellular distribution of Tmod1 and Tmod2 in hippocampal neurons. While both Tmod1 and Tmod2 regulate F-actin stability, we find that they exhibit isoform-specific roles in dendrite development and synapse formation: Tmod2 regulates dendritic arborization, whereas Tmod1 is required for spine development and synapse formation. These findings provide novel insight into the actin regulatory mechanisms underlying neuronal development, thereby shedding light on potential pathways disrupted in a number of neurological disorders.

摘要

中枢神经系统的神经元形成高度分支的树突状树突,其上有许多树突棘,作为大多数兴奋性突触的后突触平台。肌动蛋白细胞骨架在树突发育和棘形成中起着重要作用,但潜在的机制仍不完全清楚。Tropomodulins(Tmods)是一组肌动蛋白结合蛋白,可覆盖肌动蛋白丝的缓慢生长(尖端)末端,从而调节不同细胞类型中复杂肌动蛋白网络的稳定性、长度和结构。Tmod 家族的三个成员 Tmod1、Tmod2 和 Tmod3 在脊椎动物中枢神经系统中表达,但它们在神经元发育中的功能在很大程度上尚不清楚。在这项研究中,我们提供的证据表明,Tmod1 和 Tmod2 在调节棘突发育和树突分支方面分别发挥着不同的作用。使用来自两性大鼠海马组织,我们发现 Tmod1 和 Tmod2 的表达具有不同的发育特征:Tmod2 在海马发育早期表达,而 Tmod1 的表达与突触发生同时发生。然后,我们表明,Tmod2 的敲低,但不是 Tmod1,严重损害了树突分支。Tmod1 和 Tmod2 都定位于一个独特的亚棘突区域,在该区域它们调节局部 F-actin 稳定性。然而,Tmod1 的敲低,但不是 Tmod2,破坏了棘突形态发生并损害了突触形成。总之,这些发现表明,Tmod 家族不同成员对肌动蛋白细胞骨架的调节在树突和棘突发育的不同方面起着重要作用。Tropomodulin 家族的分子最著名的是控制骨骼肌中肌动蛋白肌丝的长度和稳定性。虽然大脑中表达了几种 Tropomodulin 成员,但关于它们在神经元功能中的作用的基本知识是有限的。在这项研究中,我们显示了 Tmod1 和 Tmod2 在海马神经元中的独特表达谱和亚细胞分布。虽然 Tmod1 和 Tmod2 都调节 F-actin 稳定性,但我们发现它们在树突发育和突触形成方面表现出同工型特异性作用:Tmod2 调节树突分支,而 Tmod1 是棘突发育和突触形成所必需的。这些发现为神经元发育的肌动蛋白调节机制提供了新的见解,从而揭示了许多神经障碍中可能受到破坏的潜在途径。

相似文献

4
Tropomodulins are negative regulators of neurite outgrowth.原肌球蛋白抑制神经突生长。
Eur J Cell Biol. 2011 Apr;90(4):291-300. doi: 10.1016/j.ejcb.2010.10.014. Epub 2010 Dec 10.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验