Suppr超能文献

一种加权负二项式林德利分布及其在离散数据中的应用。

A weighted negative binomial Lindley distribution with applications to dispersed data.

作者信息

Bakouch Hassan S

机构信息

Department of Mathematics, Faculty of Science, Tanta University, Tanta, 315277, Egypt.

出版信息

An Acad Bras Cienc. 2018 Jul-Sep;90(3):2617-2642. doi: 10.1590/0001-3765201820170733.

Abstract

A new discrete distribution is introduced. The distribution involves the negative binomial and size biased negative binomial distributions as sub-models among others and it is a weighted version of the two parameter discrete Lindley distribution. The distribution has various interesting properties, such as bathtub shape hazard function along with increasing/decreasing hazard rate, positive skewness, symmetric behavior, and over- and under-dispersion. Moreover, it is self decomposable and infinitely divisible, which makes the proposed distribution well suited for count data modeling. Other properties are investigated, including probability generating function, ordinary moments, factorial moments, negative moments and characterization. Estimation of the model parameters is investigated by the methods of moments and maximum likelihood, and a performance of the estimators is assessed by a simulation study. The credibility of the proposed distribution over the negative binomial, Poisson and generalized Poisson distributions is discussed based on some test statistics and four real data sets.

摘要

引入了一种新的离散分布。该分布包含负二项分布和大小偏倚负二项分布等作为子模型,并且它是两参数离散林德利分布的加权版本。该分布具有各种有趣的性质,例如具有递增/递减危险率的浴缸形危险函数、正偏度、对称行为以及过度离散和欠离散。此外,它是自分解的且无限可分的,这使得所提出的分布非常适合计数数据建模。还研究了其他性质,包括概率生成函数、普通矩、阶乘矩、负矩和特征刻画。通过矩法和最大似然法研究了模型参数的估计,并通过模拟研究评估了估计量的性能。基于一些检验统计量和四个真实数据集,讨论了所提出的分布相对于负二项分布、泊松分布和广义泊松分布的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验