College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan.
Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Comput Intell Neurosci. 2022 Apr 13;2022:6503670. doi: 10.1155/2022/6503670. eCollection 2022.
In this study, a new one-parameter count distribution is proposed by combining Poisson and XLindley distributions. Some of its statistical and reliability properties including order statistics, hazard rate function, reversed hazard rate function, mode, factorial moments, probability generating function, moment generating function, index of dispersion, Shannon entropy, Mills ratio, mean residual life function, and associated measures are investigated. All these properties can be expressed in explicit forms. It is found that the new probability mass function can be utilized to model positively skewed data with leptokurtic shape. Moreover, the new discrete distribution is considered a proper tool to model equi- and over-dispersed phenomena with increasing hazard rate function. The distribution parameter is estimated by different six estimation approaches, and the behavior of these methods is explored using the Monte Carlo simulation. Finally, two applications to real life are presented herein to illustrate the flexibility of the new model.
在这项研究中,通过结合泊松分布和 XLindley 分布,提出了一种新的单参数计数分布。研究了其一些统计和可靠性性质,包括顺序统计量、风险率函数、反向风险率函数、模式、阶乘矩、概率生成函数、矩生成函数、离差指数、Shannon 熵、Mills 比、平均剩余寿命函数和相关度量。所有这些性质都可以用显式形式表示。结果表明,新的概率质量函数可用于对具有尖峰态的正偏态数据进行建模。此外,新的离散分布被认为是一种合适的工具,可以对具有递增风险率函数的等分散和过分散现象进行建模。通过六种不同的估计方法对分布参数进行了估计,并通过蒙特卡罗模拟对这些方法的性能进行了探讨。最后,通过两个实际应用来说明了新模型的灵活性。