Suppr超能文献

原位生成嵌入整体蛋壳膜中的荧光铜纳米簇:性质与应用

In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications.

作者信息

Li Lu, Huang Min, Liu Xianhu, Sun Dengming, Shao Congying

机构信息

College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.

出版信息

Materials (Basel). 2018 Oct 9;11(10):1913. doi: 10.3390/ma11101913.

Abstract

Luminescent metal nanoclusters have attracted considerable research attention in recent years due to their unique properties and extensive usage in many fields. Three different synthetic routes were developed to in situ generate orange and red emitting copper nanoclusters embedded in monolithic eggshell membrane (Cu NCs@ESM) using different reducing reagents including N₂H₄·H₂O, NH₂OH·HCl and Vitamin C at room temperature for the first time. The routes are extremely facile, low-cost and versatile. The obtained Cu NCs@ESM nanocomposites exhibit excellent photostability and chemical stability, laying the foundation for various practical applications. Fluorescent surface patterning was demonstrated based on the proposed strategy easily. Significantly, the Cu NCs@ESM shows selective fluorescence quenching response to Hg ions and good catalytic activity for methylene blue (MB) reduction degradation making it ideal as portable sensing strip and recyclable catalyst. The work provides a general strategy for the fabrication of other various monolithic nanomaterials with potential applications.

摘要

近年来,发光金属纳米团簇因其独特的性质和在许多领域的广泛应用而备受研究关注。首次开发了三种不同的合成路线,在室温下使用包括水合肼(N₂H₄·H₂O)、盐酸羟胺(NH₂OH·HCl)和维生素C在内的不同还原剂,原位生成嵌入整体蛋壳膜中的橙色和红色发光铜纳米团簇(Cu NCs@ESM)。这些路线极其简便、低成本且用途广泛。所获得的Cu NCs@ESM纳米复合材料表现出优异的光稳定性和化学稳定性,为各种实际应用奠定了基础。基于所提出的策略,很容易实现荧光表面图案化。值得注意的是,Cu NCs@ESM对汞离子表现出选择性荧光猝灭响应,并且对亚甲基蓝(MB)还原降解具有良好的催化活性,使其成为理想的便携式传感条和可回收催化剂。这项工作为制备其他具有潜在应用的各种整体纳米材料提供了一种通用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9baf/6213854/7d959319186c/materials-11-01913-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验