Adeva-Andany María M, Rañal-Muíño Eva, Fernández-Fernández Carlos, Pazos-García Cristina, Vila-Altesor Matilde
Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazan s/n, 15406 Ferrol, Spain.
Curr Diabetes Rev. 2019;15(4):328-339. doi: 10.2174/1573399814666181009125348.
Both insulin deficiency and insulin resistance due to glucagon secretion cause fasting and postprandial hyperglycemia in patients with diabetes.
Metformin enhances insulin sensitivity, being used to prevent and treat diabetes, although its mechanism of action remains elusive.
Patients with diabetes fail to store glucose as hepatic glycogen via the direct pathway (glycogen synthesis from dietary glucose during the post-prandial period) and via the indirect pathway (glycogen synthesis from "de novo" synthesized glucose) owing to insulin deficiency and glucagoninduced insulin resistance. Depletion of the hepatic glycogen deposit activates gluconeogenesis to replenish the storage via the indirect pathway. Unlike healthy subjects, patients with diabetes experience glycogen cycling due to enhanced gluconeogenesis and failure to store glucose as glycogen. These defects raise hepatic glucose output causing both fasting and post-prandial hyperglycemia. Metformin reduces post-prandial plasma glucose, suggesting that the drug facilitates glucose storage as hepatic glycogen after meals. Replenishment of glycogen store attenuates the accelerated rate of gluconeogenesis and reduces both glycogen cycling and hepatic glucose output. Metformin also reduces fasting hyperglycemia due to declining hepatic glucose production. In addition, metformin reduces plasma insulin concentration in subjects with impaired glucose tolerance and diabetes and decreases the amount of insulin required for metabolic control in patients with diabetes, reflecting improvement of insulin activity. Accordingly, metformin preserves β-cell function in patients with type 2 diabetes.
Several mechanisms have been proposed to explain the metabolic effects of metformin, but evidence is not conclusive and the molecular basis of metformin action remains unknown.
糖尿病患者中,由于胰高血糖素分泌导致的胰岛素缺乏和胰岛素抵抗会引起空腹和餐后高血糖。
二甲双胍可增强胰岛素敏感性,用于预防和治疗糖尿病,但其作用机制仍不清楚。
由于胰岛素缺乏和胰高血糖素诱导的胰岛素抵抗,糖尿病患者无法通过直接途径(餐后期间由膳食葡萄糖合成糖原)和间接途径(由“从头”合成的葡萄糖合成糖原)将葡萄糖储存为肝糖原。肝糖原储备的耗尽会激活糖异生,通过间接途径补充储存。与健康受试者不同,糖尿病患者由于糖异生增强和无法将葡萄糖储存为糖原而经历糖原循环。这些缺陷会增加肝葡萄糖输出,导致空腹和餐后高血糖。二甲双胍可降低餐后血糖,表明该药物有助于餐后将葡萄糖储存为肝糖原。糖原储备的补充可减弱糖异生的加速速率,并减少糖原循环和肝葡萄糖输出。二甲双胍还可降低空腹高血糖,原因是肝葡萄糖生成减少。此外,二甲双胍可降低糖耐量受损和糖尿病患者的血浆胰岛素浓度,并减少糖尿病患者代谢控制所需的胰岛素量,这反映了胰岛素活性的改善。因此,二甲双胍可保留2型糖尿病患者的β细胞功能。
已经提出了几种机制来解释二甲双胍的代谢作用,但证据并不确凿,二甲双胍作用的分子基础仍然未知。