Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan.
Nanoscale. 2018 Nov 7;10(41):19409-19417. doi: 10.1039/c8nr04630a. Epub 2018 Oct 11.
The first step towards the synthesis of single-molecule magnet (SMM)-based spintronics devices is the organization and manipulation of magnetic molecules on surfaces. Our previous studies on bulk crystals demonstrated that protonated porphyrinato double-decker complexes [Tb(Hoep)(oep)] (oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato) are not SMMs; however, once a hydrogen is removed to produce their neutral radical forms, [Tb(oep)], they convert to SMMs. These intriguing properties encouraged us to examine the electronic/spin properties of these complexes and their chemical conversion ability after their transfer onto a metal substrate, similar to the environment required for the practical application of SMMs. Herein, we conducted a single-molecule-scale conversion of the protonated bis(porphyrinato)terbium(iii) double-decker complex [Tb(Hoep)(oep)], whose hepta-coordinated terbium ion changes into octa-coordinated [Tb(oep)] on detaching a hydrogen atom by scanning tunnelling microscopy. This conversion can be caused by the injection of tunnelling electrons of energy 1.5-2.5 eV. We confirmed the conversion by analysing the topographic image and the spin state of the molecule. The latter was achieved by examining the Kondo resonance, which originated from the screening of the molecular spin by the conduction electrons of the metal. The Kondo resonance was not observed for [Tb(Hoep)(oep)] but was observed for the converted species, which agrees well with a model containing the [Tb(oep)] molecule and Kondo resonance originating from the π-electron spin of the porphyrin ligand. Even though it is not possible to provide complete evidence of the SMM properties of the transferred molecule, we have demonstrated a possible path to realize the switch-on SMM properties of a single molecule.
制备基于单分子磁体(SMM)的自旋电子器件的第一步是在表面上对磁分子进行组织和操控。我们之前对块状晶体的研究表明,质子化卟啉二茂铁配合物[Tb(Hoep)(oep)](oep=2,3,7,8,12,13,17,18-辛基卟啉)不是 SMM;然而,一旦氢原子被移除产生它们的中性自由基形式[Tb(oep)],它们就会变成 SMM。这些有趣的性质促使我们研究这些配合物的电子/自旋性质及其在转移到金属基底后的化学转化能力,类似于 SMM 实际应用所需的环境。在此,我们通过扫描隧道显微镜对质子化双(卟啉)铽(III)二茂铁配合物[Tb(Hoep)(oep)]进行了单分子尺度的转化,其七配位铽离子通过移除一个氢原子转变为八配位[Tb(oep)]。这种转化可以通过注入能量为 1.5-2.5 eV 的隧道电子来实现。我们通过分析分子的形貌图像和自旋状态来确认转化。后者是通过检查源于金属传导电子对分子自旋屏蔽的 Kondo 共振来实现的。对于[Tb(Hoep)(oep)],没有观察到 Kondo 共振,但对于转化后的物种观察到了 Kondo 共振,这与包含[Tb(oep)]分子和源于卟啉配体π电子自旋的 Kondo 共振的模型非常吻合。尽管不能为转移分子提供 SMM 性质的完整证据,但我们已经证明了实现单分子 SMM 性质的可能途径。