综合基因组和基于转录组的方法预测和鉴定根癌农杆菌菌株中涉及的新型 sRNAs。
Prediction and identification of novel sRNAs involved in Agrobacterium strains by integrated genome-wide and transcriptome-based methods.
机构信息
Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India.
Department of Biotechnology, National Centre for Cell Science, Pune-411007, Maharashtra, India.
出版信息
FEMS Microbiol Lett. 2018 Dec 1;365(23). doi: 10.1093/femsle/fny247.
Small RNAs (sRNAs) are a class of gene regulators in bacteria, playing a central role in their response to environmental changes. Bioinformatic prediction facilitates the identification of sRNAs expressed under different conditions. We propose a novel method of prediction of sRNAs from the genome of Agrobacterium based on a positional weight matrix of conditional sigma factors. sRNAs predicted from the genome are integrated with the virulence-specific transcriptome data to identify putative sRNAs that are overexpressed during Agrobacterial virulence induction. A total of 384 sRNAs are predicted from transcriptome data analysis of Agrobacterium fabrum and 100-500 sRNAs from the genome of different Agrobacterial strains. In order to refine our study, a final set of 10 novel sRNAs with best features across different replicons targeting virulence genes were experimentally identified using semi-quantitative polymerase chain reaction. Since Ti plasmid plays a major role in virulence, out of 10 sRNAs across the replicons, 4 novel sRNAs differentially expressed under virulence induced and non-induced conditions are predicted to be present in the Ti plasmid T-DNA region flanking virulence-related genes like agrocinopine synthase, indole 3-lactate synthase, mannopine synthase and tryptophan monooxygenase. Further validation of the function of these sRNAs in conferring virulence would be relevant to explore their role in Agrobacterium-mediated plant transformation.
小 RNA(sRNA)是细菌中的一类基因调控因子,在其对外界环境变化的响应中发挥着核心作用。生物信息学预测有助于鉴定在不同条件下表达的 sRNA。我们提出了一种基于条件σ因子位置权重矩阵的从农杆菌基因组中预测 sRNA 的新方法。从基因组预测的 sRNA 与毒力特异性转录组数据相结合,以鉴定在农杆菌毒力诱导过程中过度表达的假定 sRNA。从农杆菌 fabrum 的转录组数据分析中预测了 384 个 sRNA,从不同农杆菌菌株的基因组中预测了 100-500 个 sRNA。为了完善我们的研究,使用半定量聚合酶链反应实验鉴定了一组针对毒力基因的具有最佳特征的 10 个新 sRNA。由于 Ti 质粒在毒力中起着重要作用,在跨复制子的 10 个 sRNA 中,预测到 4 个新的 sRNA 在诱导和非诱导条件下的 Ti 质粒 T-DNA 区域的毒力相关基因侧翼(如农杆菌素合成酶、吲哚 3-乳酸合成酶、甘露碱合成酶和色氨酸单加氧酶)表现出差异表达。进一步验证这些 sRNA 在赋予毒力方面的功能,将有助于探索它们在农杆菌介导的植物转化中的作用。