School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.
Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Med Phys. 2018 Dec;45(12):5515-5524. doi: 10.1002/mp.13232. Epub 2018 Nov 2.
To extend image reconstruction using image-space sampling function (IRIS) to address large-scale motion in multishot diffusion-weighted imaging (DWI).
A clustered IRIS (CIRIS) algorithm that would extend IRIS was proposed to correct for large-scale motion. For DWI, CIRIS initially groups the shots into clusters without intracluster large-scale motion and reconstructs each cluster by using IRIS. Then, CIRIS registers these cluster images and combines the registered images by using a weighted average to correct for voxel mismatch caused by intercluster large-scale motion. For diffusion tensor imaging (DTI), CIRIS further reduces the effect of motion on diffusion directions by treating motion-induced direction changes as additional diffusion directions. CIRIS also introduces the detection and rejection of motion-corrupted data to avoid corresponding image degradation. The proposed method was evaluated by simulation and in vivo diffusion datasets.
Experiments demonstrated that CIRIS can reduce motion-induced blurring and artifacts in DWI and provide more accurate DTI estimations in the presence of large-scale motion, compared with IRIS.
The proposed method presents a novel approach to correct for large-scale in-plane motion for multishot DWI and is expected to benefit the practical application of high-resolution diffusion imaging.
将图像空间采样函数(IRIS)的图像重建扩展到解决多shot 扩散加权成像(DWI)中的大尺度运动问题。
提出了一种聚类 IRIS(CIRIS)算法来扩展 IRIS,以纠正大尺度运动。对于 DWI,CIRIS 首先将 shots 分组为没有 intracluster 大尺度运动的簇,并使用 IRIS 重建每个簇。然后,CIRIS 对这些簇图像进行配准,并通过使用加权平均将它们组合起来,以纠正由 cluster 间大尺度运动引起的体素失配。对于扩散张量成像(DTI),CIRIS 通过将运动引起的方向变化视为额外的扩散方向,进一步降低运动对扩散方向的影响。CIRIS 还引入了运动伪影数据的检测和剔除,以避免相应的图像降级。该方法通过仿真和体内扩散数据集进行了评估。
实验表明,与 IRIS 相比,CIRIS 可以减少 DWI 中运动引起的模糊和伪影,并在存在大尺度运动的情况下提供更准确的 DTI 估计。
该方法提出了一种新的方法来校正多 shot DWI 中的大尺度面内运动,有望促进高分辨率扩散成像的实际应用。