School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Magn Reson Med. 2023 May;89(5):1961-1974. doi: 10.1002/mrm.29578. Epub 2023 Jan 27.
This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitative mapping.
3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permits mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction.
Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. For mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis.
The proposed technique enables rapid 3D distortion-free high-resolution imaging and mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brain mapping in 47 s at 1.1 × 1.1 × 1.0 mm resolution.
本研究旨在开发一种新颖的无失真 3D-EPI 采集和图像重建技术,用于快速、稳健、高分辨率的全脑成像以及定量映射。
设计了 3D Blip-up 和 -down 采集(3D-BUDA)序列,用于单回波和多回波 3D 梯度回波(GRE)-EPI 成像,使用带有 Blip-up 和 -down 读出的多个激发来编码 B 场图信息。通过跨激发的并行成像(CAIPI)采样实现互补的欠采样。对于图像重建,采用迭代硬阈值算法来最小化成本函数,该函数结合了场图信息通知的并行成像和多激发 3D-BUDA 数据的结构化低秩约束。将 3D-BUDA 扩展到多回波成像中,可进行定量映射。为此,我们建议沿着回波及激发两个维度构建联合的 Hankel 矩阵,以提高重建的准确性。
体内多回波数据的实验结果表明,通过沿着回波及激发两个维度进行联合重建,与标准 3D-BUDA 重建相比,重建的准确性得到了提高。进一步表明 CAIPI 采样可以提高图像质量。对于定量映射,通过 Bland-Altman 分析量化,3D-Joint-CAIPI-BUDA 和参考多回波 GRE 的参数值在一致性范围内。
该技术能够实现快速、无失真、高分辨率的全脑成像和定量映射。具体而言,3D-BUDA 可在 3T 上以 22s 实现 1mm 各向同性的全脑成像,在 7T 扫描仪上以 9s 实现该成像。多回波 3D-BUDA 与 CAIPI 采集和联合重建相结合,可在 1.1×1.1×1.0mm 分辨率下实现 47s 的无失真全脑定量映射。