Department of Chemistry, Durban University of Technology, Durban 4000, South Africa; Jl. Letnand Jendral Sarwo Edi Wibowo, Semarang College of Pharmaceutical Sciences, Semarang 50192, Indonesia.
Department of Chemistry, Durban University of Technology, Durban 4000, South Africa.
J Photochem Photobiol B. 2018 Nov;188:159-176. doi: 10.1016/j.jphotobiol.2018.08.005. Epub 2018 Aug 8.
Owing to the emerging applications of DNA-functionalized TiO nanocrystals towards DNA damage detection, it is inevitable to understand the better chemistry as well as in-depth molecular interaction phenomena. Fundamentally, energy difference underlies the layer-by-layer construction, resulted in the increase of the interaction energy and thus, altering the electrochemical behavior. Herein, Density functional theory (DFT) calculations were performed using DMol3 and DFTB+ codes successfully to elucidate the structural, electronics, and vibrational properties of the layer-by-layer components composing ss-DNA/dopamine/TiO/FTO. The obtained results are in good agreement with the experimental findings. The band gaps of FTO and TiO were computationally obtained at 3.335 and 3.136 eV which are comparable with the experimental data (3.500 eV; FTO and 3.200 eV; TiO). Frontier orbital analysis is also considered to elucidate their electron transfer phenomena. Further, a 100 ns MD simulations are carried out using canonical ensemble embedded with COMPASS-Universal Forcefields generating useful thermodynamics parameters. Binding energies indicate increasing interaction energies for the layer-by-layer nanosystem, in agreement with the increasing diameter of electrochemical impedance spectroscopy (EIS) semicircle. Our results reveal the fundamental understanding of the DNA-functionalized TiO nanocrystals down to molecular and electronic level and further, paving a way of its application towards nanoelectrochemical DNA biosensors.
由于 DNA 功能化 TiO2 纳米晶体在 DNA 损伤检测方面的新兴应用,了解更好的化学性质以及深入的分子相互作用现象是不可避免的。从根本上讲,能量差是分层构建的基础,导致相互作用能的增加,从而改变电化学行为。在此,使用 DMol3 和 DFTB+代码成功地进行了密度泛函理论(DFT)计算,以阐明由 ss-DNA/多巴胺/TiO2/FTO 组成的层层组件的结构、电子和振动特性。得到的结果与实验结果吻合得很好。FTO 和 TiO2 的带隙在计算中分别为 3.335 和 3.136 eV,与实验数据(FTO 为 3.500 eV;TiO2 为 3.200 eV)相当。还进行了前沿轨道分析以阐明它们的电子转移现象。此外,还使用正则系综和 COMPASS-通用力场进行了 100 ns MD 模拟,生成有用的热力学参数。结合能表明,层层纳米系统的相互作用能增加,与电化学阻抗谱(EIS)半圆的直径增加一致。我们的结果揭示了 DNA 功能化 TiO2 纳米晶体在分子和电子水平上的基本理解,并进一步为其在纳米电化学 DNA 生物传感器中的应用铺平了道路。