Suppr超能文献

金属硫化物矿物的化学多样性及其对生命起源的启示

Chemical Diversity of Metal Sulfide Minerals and Its Implications for the Origin of Life.

作者信息

Li Yamei, Kitadai Norio, Nakamura Ryuhei

机构信息

Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

出版信息

Life (Basel). 2018 Oct 10;8(4):46. doi: 10.3390/life8040046.

Abstract

Prebiotic organic synthesis catalyzed by Earth-abundant metal sulfides is a key process for understanding the evolution of biochemistry from inorganic molecules, yet the catalytic functions of sulfides have remained poorly explored in the context of the origin of life. Past studies on prebiotic chemistry have mostly focused on a few types of metal sulfide catalysts, such as FeS or NiS, which form limited types of products with inferior activity and selectivity. To explore the potential of metal sulfides on catalyzing prebiotic chemical reactions, here, the chemical diversity (variations in chemical composition and phase structure) of 304 natural metal sulfide minerals in a mineralogy database was surveyed. Approaches to rationally predict the catalytic functions of metal sulfides are discussed based on advanced theories and analytical tools of electrocatalysis such as proton-coupled electron transfer, structural comparisons between enzymes and minerals, and in situ spectroscopy. To this end, we introduce a model of geoelectrochemistry driven prebiotic synthesis for chemical evolution, as it helps us to predict kinetics and selectivity of targeted prebiotic chemistry under "chemically messy conditions". We expect that combining the data-mining of mineral databases with experimental methods, theories, and machine-learning approaches developed in the field of electrocatalysis will facilitate the prediction and verification of catalytic performance under a wide range of pH and Eh conditions, and will aid in the rational screening of mineral catalysts involved in the origin of life.

摘要

由地球上储量丰富的金属硫化物催化的益生元有机合成是理解生物化学从无机分子进化而来的关键过程,然而在生命起源的背景下,硫化物的催化功能仍未得到充分探索。过去关于益生元化学的研究大多集中在少数几种金属硫化物催化剂上,如FeS或NiS,它们形成的产物类型有限,活性和选择性较差。为了探索金属硫化物催化益生元化学反应的潜力,我们在此调查了矿物学数据库中304种天然金属硫化物矿物的化学多样性(化学成分和相结构的变化)。基于质子耦合电子转移、酶与矿物的结构比较以及原位光谱等先进的电催化理论和分析工具,讨论了合理预测金属硫化物催化功能的方法。为此,我们引入了一个地球电化学驱动的益生元合成化学进化模型,因为它有助于我们预测在“化学混乱条件”下目标益生元化学的动力学和选择性。我们期望将矿物数据库的数据挖掘与电催化领域开发的实验方法、理论和机器学习方法相结合,将有助于在广泛的pH和Eh条件下预测和验证催化性能,并有助于合理筛选参与生命起源的矿物催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4472/6316247/ac308c8c9e49/life-08-00046-g001.jpg

相似文献

1
Chemical Diversity of Metal Sulfide Minerals and Its Implications for the Origin of Life.
Life (Basel). 2018 Oct 10;8(4):46. doi: 10.3390/life8040046.
3
Current approaches for mitigating acid mine drainage.
Rev Environ Contam Toxicol. 2013;226:1-32. doi: 10.1007/978-1-4614-6898-1_1.
4
A perspective on the role of minerals in prebiotic synthesis.
Ambio. 2004 Dec;33(8):539-51. doi: 10.1579/0044-7447-33.8.539.
6
Microbial biosignatures in ancient deep-sea hydrothermal sulfides.
Geobiology. 2023 May;21(3):355-377. doi: 10.1111/gbi.12539. Epub 2022 Dec 16.
7
Metal Catalysis Acting on Nitriles in Early Earth Hydrothermal Systems.
Life (Basel). 2023 Jul 7;13(7):1524. doi: 10.3390/life13071524.
8
Peptides En Route from Prebiotic to Biotic Catalysis.
Acc Chem Res. 2024 Aug 6;57(15):2027-2037. doi: 10.1021/acs.accounts.4c00137. Epub 2024 Jul 17.
9
FeS/S/FeS(2) redox system and its oxidoreductase-like chemistry in the iron-sulfur world.
Astrobiology. 2011 Jun;11(5):471-6. doi: 10.1089/ast.2011.0624.

引用本文的文献

1
Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism.
Nat Ecol Evol. 2025 May;9(5):769-778. doi: 10.1038/s41559-025-02676-w. Epub 2025 Apr 30.
2
Selective Adsorption of Thiol-Containing Molecules on Copper Sulfide Surfaces via Molecule-Surface Disulfide Bridges.
J Phys Chem C Nanomater Interfaces. 2025 Jan 17;129(4):1976-1987. doi: 10.1021/acs.jpcc.4c06463. eCollection 2025 Jan 30.
4
Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics.
iScience. 2024 Mar 25;27(5):109555. doi: 10.1016/j.isci.2024.109555. eCollection 2024 May 17.
5
Homologous acetone carboxylases select Fe(II) or Mn(II) as the catalytic cofactor.
mBio. 2024 Feb 14;15(2):e0298723. doi: 10.1128/mbio.02987-23. Epub 2023 Dec 21.
6
Electron transport chains as a window into the earliest stages of evolution.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2210924120. doi: 10.1073/pnas.2210924120. Epub 2023 Aug 14.
7
Metal Catalysis Acting on Nitriles in Early Earth Hydrothermal Systems.
Life (Basel). 2023 Jul 7;13(7):1524. doi: 10.3390/life13071524.
8
Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: and .
RSC Adv. 2022 Jul 20;12(32):20807-20828. doi: 10.1039/d2ra03102g. eCollection 2022 Jul 14.
9
On the Evolutionary History of the Twenty Encoded Amino Acids.
Chemistry. 2022 Oct 4;28(55):e202201419. doi: 10.1002/chem.202201419. Epub 2022 Jul 28.

本文引用的文献

1
Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS Catalyst: Theoretical and Experimental Studies.
Adv Mater. 2018 Jul;30(28):e1800191. doi: 10.1002/adma.201800191. Epub 2018 May 28.
2
CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface.
Science. 2018 May 18;360(6390):783-787. doi: 10.1126/science.aas9100.
4
Geoelectrochemical CO production: Implications for the autotrophic origin of life.
Sci Adv. 2018 Apr 4;4(4):eaao7265. doi: 10.1126/sciadv.aao7265. eCollection 2018 Apr.
5
Selective Electrocatalytic Reduction of Nitrite to Dinitrogen Based on Decoupled Proton-Electron Transfer.
J Am Chem Soc. 2018 Feb 14;140(6):2012-2015. doi: 10.1021/jacs.7b12774. Epub 2018 Feb 6.
6
Progress and Perspective of Electrocatalytic CO Reduction for Renewable Carbonaceous Fuels and Chemicals.
Adv Sci (Weinh). 2017 Sep 29;5(1):1700275. doi: 10.1002/advs.201700275. eCollection 2018 Jan.
7
Bulk measurements of messy chemistries are needed for a theory of the origins of life.
Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109). doi: 10.1098/rsta.2016.0347.
9
Bond Activation and Hydrogen Evolution from Water through Reactions with MS (M = Mo, W) and WS Anionic Clusters.
J Phys Chem A. 2017 Mar 2;121(8):1760-1767. doi: 10.1021/acs.jpca.6b11879. Epub 2017 Feb 17.
10
High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO Reduction.
Angew Chem Int Ed Engl. 2017 May 22;56(22):6068-6072. doi: 10.1002/anie.201612038. Epub 2017 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验