Rimola Albert, Sodupe Mariona, Ugliengo Piero
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
Life (Basel). 2019 Jan 17;9(1):10. doi: 10.3390/life9010010.
There is a consensus that the interaction of organic molecules with the surfaces of naturally-occurring minerals might have played a crucial role in chemical evolution and complexification in a prebiotic era. The hurdle of an overly diluted primordial soup occurring in the free ocean may have been overcome by the adsorption and concentration of relevant molecules on the surface of abundant minerals at the sea shore. Specific organic⁻mineral interactions could, at the same time, organize adsorbed molecules in well-defined orientations and activate them toward chemical reactions, bringing to an increase in chemical complexity. As experimental approaches cannot easily provide details at atomic resolution, the role of in silico computer simulations may fill that gap by providing structures and reactive energy profiles at the organic⁻mineral interface regions. Accordingly, numerous computational studies devoted to prebiotic chemical evolution induced by organic⁻mineral interactions have been proposed. The present article aims at reviewing recent in silico works, mainly focusing on prebiotic processes occurring on the mineral surfaces of clays, iron sulfides, titanium dioxide, and silica and silicates simulated through quantum mechanical methods based on the density functional theory (DFT). The DFT is the most accurate way in which chemists may address the behavior of the molecular world through large models mimicking chemical complexity. A perspective on possible future scenarios of research using in silico techniques is finally proposed.
人们普遍认为,在生命起源之前的时代,有机分子与天然矿物表面的相互作用可能在化学进化和复杂化过程中发挥了关键作用。在自由海洋中出现的原始汤过度稀释的障碍,可能已通过相关分子在海岸丰富矿物表面的吸附和浓缩而得以克服。与此同时,特定的有机 - 矿物相互作用可以将吸附的分子以明确的方向排列,并促使它们发生化学反应,从而增加化学复杂性。由于实验方法难以在原子分辨率下提供详细信息,计算机模拟的作用可能通过提供有机 - 矿物界面区域的结构和反应能量分布来填补这一空白。因此,已经提出了许多致力于有机 - 矿物相互作用引发的生命起源前化学进化的计算研究。本文旨在综述近期的计算机模拟研究工作,主要关注通过基于密度泛函理论(DFT)的量子力学方法模拟的粘土、硫化铁、二氧化钛以及二氧化硅和硅酸盐等矿物表面上发生的生命起源前过程。DFT是化学家通过模仿化学复杂性的大型模型来研究分子世界行为的最精确方法。最后提出了关于使用计算机模拟技术的未来可能研究方向的展望。