Suppr超能文献

TDP-43 RRM2 部分折叠状态的特征及其对 ALS 发病机制的意义。

Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.

出版信息

Biophys J. 2018 Nov 6;115(9):1673-1680. doi: 10.1016/j.bpj.2018.09.011. Epub 2018 Sep 21.

Abstract

The human protein TDP-43 is a major component of the cellular aggregates found in amyotrophic lateral sclerosis and other neurodegenerative diseases. Insoluble cytoplasmic aggregates isolated from the brain of amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients contain ubiquitinated, hyperphosphorylated, and N-terminally truncated TDP-43. Truncated fragments of TDP-43 identified from patient tissues contain part of the second RNA recognition motif (RRM2) and the disordered C-terminus, indicating that both domains can be involved in aggregation and toxicity. Here, we focus on RRM2. Using all-atom replica-averaged metadynamics simulations with NMR chemical shift restraints, we characterized the atomic structure of non-native states of RRM2, sparsely populated under native conditions. These structures reveal the exposure to the solvent of aggregation-prone peptide regions, normally buried in the native state, supporting a role in aggregation for the partially folded states of RRM2.

摘要

人类蛋白 TDP-43 是在肌萎缩性侧索硬化症和其他神经退行性疾病中发现的细胞聚集体的主要成分。从肌萎缩性侧索硬化症和额颞叶变性患者的大脑中分离出的不溶性细胞质聚集体包含泛素化、过度磷酸化和 N 端截断的 TDP-43。从患者组织中鉴定出的 TDP-43 截断片段包含第二个 RNA 识别基序(RRM2)和无序的 C 末端的一部分,表明这两个结构域都可以参与聚集和毒性。在这里,我们关注 RRM2。使用带有 NMR 化学位移约束的全原子复制平均元动力学模拟,我们对 RRM2 的非天然状态的原子结构进行了表征,这些状态在天然条件下很少存在。这些结构揭示了易于聚集的肽区域暴露于溶剂中,这些区域在天然状态下通常被埋藏,支持 RRM2 的部分折叠状态在聚集中的作用。

相似文献

1
Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis.
Biophys J. 2018 Nov 6;115(9):1673-1680. doi: 10.1016/j.bpj.2018.09.011. Epub 2018 Sep 21.
3
Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).
J Biomol Struct Dyn. 2019 Jan;37(1):178-194. doi: 10.1080/07391102.2017.1422026. Epub 2018 Jan 10.
4
Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis.
J Biomol Struct Dyn. 2021 Jan;39(1):357-367. doi: 10.1080/07391102.2020.1714481. Epub 2020 Jan 22.
5
ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity.
Biochem Biophys Res Commun. 2017 Apr 15;485(4):826-831. doi: 10.1016/j.bbrc.2017.02.139. Epub 2017 Feb 28.
6
Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.
Biophys J. 2017 Aug 8;113(3):540-549. doi: 10.1016/j.bpj.2017.06.049.
7
The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates.
J Biol Chem. 2013 Mar 29;288(13):9049-57. doi: 10.1074/jbc.M112.438564. Epub 2013 Jan 31.
9
Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43.
PLoS One. 2012;7(12):e52776. doi: 10.1371/journal.pone.0052776. Epub 2012 Dec 26.

引用本文的文献

1
Exploring Protein Misfolding in Amyotrophic Lateral Sclerosis: Structural and Functional Insights.
Biomedicines. 2025 May 9;13(5):1146. doi: 10.3390/biomedicines13051146.
2
The Regulation of TDP-43 Structure and Phase Transitions: A Review.
Protein J. 2025 Apr;44(2):113-132. doi: 10.1007/s10930-025-10261-0. Epub 2025 Feb 22.
4
A Hydrophobic Core Stabilizes the Residual Structure in the RRM2 Intermediate State of the ALS-linked Protein TDP-43.
J Mol Biol. 2024 Nov 15;436(22):168823. doi: 10.1016/j.jmb.2024.168823. Epub 2024 Oct 18.
5
RNA binding tunes the conformational plasticity and intradomain stability of TDP-43 tandem RNA recognition motifs.
Biophys J. 2024 Nov 5;123(21):3844-3855. doi: 10.1016/j.bpj.2024.09.031. Epub 2024 Sep 30.
6
Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43.
Aging Dis. 2024 Oct 1;15(5):2084-2112. doi: 10.14336/AD.2023.1118.
7
Importin α/β and the tug of war to keep TDP-43 in solution: quo vadis?
Bioessays. 2022 Dec;44(12):e2200181. doi: 10.1002/bies.202200181. Epub 2022 Oct 17.
10
To Be or Not To Be…Toxic-Is RNA Association With TDP-43 Complexes Deleterious or Protective in Neurodegeneration?
Front Mol Biosci. 2020 Jan 10;6:154. doi: 10.3389/fmolb.2019.00154. eCollection 2019.

本文引用的文献

2
Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2.
Nat Struct Mol Biol. 2018 Apr;25(4):311-319. doi: 10.1038/s41594-018-0045-5. Epub 2018 Mar 12.
3
Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.
Biophys J. 2017 Aug 8;113(3):540-549. doi: 10.1016/j.bpj.2017.06.049.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
7
A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1.
J Chem Theory Comput. 2009 Sep 8;5(9):2197-201. doi: 10.1021/ct900202f. Epub 2009 Aug 4.
8
Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins.
J Chem Theory Comput. 2011 Jun 14;7(6):1773-82. doi: 10.1021/ct200094b. Epub 2011 May 5.
9
On the Use of Experimental Observations to Bias Simulated Ensembles.
J Chem Theory Comput. 2012 Oct 9;8(10):3445-51. doi: 10.1021/ct300112v. Epub 2012 Aug 27.
10
Replica-Averaged Metadynamics.
J Chem Theory Comput. 2013 Dec 10;9(12):5610-7. doi: 10.1021/ct4006272. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验