Suppr超能文献

线粒体和质膜双重靶向嵌合肽用于单一药物协同光动力治疗。

Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy.

机构信息

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering & School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.

Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.

出版信息

Biomaterials. 2019 Jan;188:1-11. doi: 10.1016/j.biomaterials.2018.10.005. Epub 2018 Oct 5.

Abstract

Mitochondria and cell membrane play important roles in maintaining cellular activity and stability. Here, a single-agent self-delivery chimeric peptide based nanoparticle (designated as M-ChiP) was developed for mitochondria and plasma membrane dual-targeted photodynamic tumor therapy. Without additional carrier, M-ChiP possessed high drug loading efficacy as well as the excellent ability of producing reactive oxygen species (ROS). Moreover, the dual-targeting property facilitated the effective subcellular localization of photosensitizer protoporphyrin IX (PpIX) to generate ROS in situ for enhanced photodynamic therapy (PDT). Notably, plasma membrane-targeted PDT would enhance the membrane permeability to improve the cellular delivery of M-ChiP, and even directly disrupt the cell membrane to induce cell necrosis. Additionally, mitochondria-targeted PDT would decrease mitochondrial membrane potential and significantly promote the cell apoptosis. Both in vitro and in vivo investigations indicated that this combinatorial PDT in mitochondria and plasma membrane could achieve the therapeutic effect maximization with reduced side effects. The single-agent self-delivery system with dual-targeting strategy was demonstrated to be a promising nanoplatform for synergistic tumor therapy.

摘要

线粒体和细胞膜在维持细胞活性和稳定性方面发挥着重要作用。在这里,开发了一种基于单一组分自递呈嵌合肽的纳米颗粒(命名为 M-ChiP),用于线粒体和质膜双重靶向光动力肿瘤治疗。无需额外载体,M-ChiP 具有高载药效率以及产生活性氧(ROS)的优异能力。此外,双重靶向特性促进了光敏剂原卟啉 IX(PpIX)的有效亚细胞定位,以原位产生 ROS,从而增强光动力治疗(PDT)。值得注意的是,质膜靶向 PDT 会增强细胞膜通透性,提高 M-ChiP 的细胞递送,甚至直接破坏细胞膜诱导细胞坏死。此外,线粒体靶向 PDT 会降低线粒体膜电位,显著促进细胞凋亡。体外和体内研究均表明,这种线粒体和质膜联合 PDT 可以实现治疗效果最大化,同时减少副作用。具有双重靶向策略的单一组分自递呈系统被证明是一种有前途的协同肿瘤治疗的纳米平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验