Opt Lett. 2018 Oct 15;43(20):5126-5129. doi: 10.1364/OL.43.005126.
We present an efficient method to generate a Greenberger-Horne-Zeilinger (GHZ) entangled state of three cat-state qubits via circuit QED. The GHZ state is prepared with three microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the operation, decoherence caused by the energy relaxation and dephasing of the qutrit is greatly suppressed. The GHZ state is created deterministically, because no measurement is involved. Numerical simulations show that the high-fidelity generation of a three-cqubit GHZ state is feasible with the present circuit QED technology. This proposal can be easily extended to create a N-cqubit GHZ state (N≥3), with N microwave or optical cavities coupled to a natural or artificial three-level atom.
我们提出了一种通过电路量子电动力学(circuit QED)生成三体猫态量子比特的格林伯哥-霍恩-泽林格(Greenberger-Horne-Zeilinger,GHZ)纠缠态的有效方法。通过三个与超导跃迁量子比特耦合的微波腔来制备 GHZ 态。由于量子比特在操作过程中保持在基态,因此量子比特的能量弛豫和退相引起的退相干被大大抑制。由于不涉及测量,因此 GHZ 态是确定性地产生的。数值模拟表明,利用现有的电路量子电动力学技术,可以实现具有高保真度的三体量子比特 GHZ 态的生成。该方案可以很容易地扩展到生成 N 体 GHZ 态(N≥3),其中 N 个微波或光腔与自然或人工三能级原子耦合。