Suppr超能文献

基于第一性原理研究,原始的和铜修饰的六角氮化铟单层是检测和清除六氟化硫分解产物的一个有前景的候选材料。

Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF decompositions based on first-principle study.

作者信息

Chen Dachang, Zhang Xiaoxing, Tang Ju, Cui Zhaolun, Cui Hao

机构信息

School of Electrical Engineering, Wuhan University, Wuhan 430072, China.

School of Electrical Engineering, Wuhan University, Wuhan 430072, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China.

出版信息

J Hazard Mater. 2019 Feb 5;363:346-357. doi: 10.1016/j.jhazmat.2018.10.006. Epub 2018 Oct 6.

Abstract

We carried out the first-principle study of four types of SF decompositions adsorbed on pristine and Cu atom decorated hexagonal InN monolayer. The adsorption structures, adsorption energy, electron transfer, band structure, density of states and desorption properties were discussed to evaluate the possible application of InN monolayer in field of adsorbent and gas sensor. The results revealed that the pristine InN monolayer has the largest adsorption energy to SO with evident chemical interactions. The introduction of Cu adatom on InN monolayer significantly enhanced the chemical interactions between the InN monolayer and the SO, SOF, SOF gas molecule but declined the adsorption energy of HF. We also investigated the electronic properties of all adsorption configurations and estimated the desorption time of every gas molecule from pristine and Cu decorated InN monolayer to evaluate the potential application in noxious gas detecting and scavenging in gas insulated switch-gear (GIS).

摘要

我们对吸附在原始和铜原子修饰的六方氮化铟单层上的四种类型的六氟化硫分解产物进行了第一性原理研究。讨论了吸附结构、吸附能、电子转移、能带结构、态密度和解吸特性,以评估氮化铟单层在吸附剂和气体传感器领域的潜在应用。结果表明,原始氮化铟单层对二氧化硫具有最大的吸附能,且存在明显的化学相互作用。在氮化铟单层上引入铜原子显著增强了氮化铟单层与二氧化硫、亚硫酰氟、二氟化硫气体分子之间的化学相互作用,但降低了氟化氢的吸附能。我们还研究了所有吸附构型的电子性质,并估计了每个气体分子从原始和铜修饰的氮化铟单层上的解吸时间,以评估其在气体绝缘开关设备(GIS)中有害气体检测和清除方面的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验